共查询到20条相似文献,搜索用时 15 毫秒
1.
Yating Li Zuhao Yu Prof. Jianhang Huang Prof. Yonggang Wang Prof. Yongyao Xia 《Angewandte Chemie (International ed. in English)》2023,62(47):e202309957
Problems of zinc anode including dendrite and hydrogen evolution seriously degrade the performance of zinc batteries. Solid electrolyte interphase (SEI), which plays a key role in achieving high reversibility of lithium anode in aprotic organic solvent, is also beneficial to performance improvement of zinc anode in aqueous electrolyte. However, various studies about interphase for zinc electrode is quite fragmented, and lack of deep understanding on root causes or general design rules for SEI construction. And water molecules with high reactivity brings serious challenge to the effective SEI construction. Here, we reviewed the brief development history of zinc batteries firstly, then summarized the approaches to construct SEI in aqueous electrolyte. Furthermore, the formation mechanisms behind approaches are systematically analyzed, together with discussion on the SEI components and evaluation on electrochemical performance of zinc anode with various types of SEI. Meanwhile, the challenge between lab and industrialization are also discussed. 相似文献
2.
Dr. Zachary T. Gossage Nanako Ito Prof. Tomooki Hosaka Prof. Ryoichi Tatara Prof. Shinichi Komaba 《Angewandte Chemie (International ed. in English)》2023,62(43):e202307446
The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6(OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈−1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from −0.9 V to <−1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures. 相似文献
3.
Dr. Zeheng Li Yu-Xing Yao Dr. Shuo Sun Dr. Cheng-Bin Jin Nan Yao Prof. Chong Yan Prof. Qiang Zhang 《Angewandte Chemie (International ed. in English)》2023,62(37):e202303888
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application. 相似文献
4.
Yi-Fan Tian Dr. Shuang-Jie Tan Zhuo-Ya Lu Di-Xin Xu Han-Xian Chen Chao-Hui Zhang Xu-Sheng Zhang Dr. Ge Li Dr. Yu-Ming Zhao Dr. Wan-Ping Chen Dr. Quan Xu Prof. Rui Wen Dr. Juan Zhang Prof. Yu-Guo Guo 《Angewandte Chemie (International ed. in English)》2023,62(33):e202305988
Ether solvents with superior reductive stability promise excellent interphasial stability with high-capacity anodes while the limited oxidative resistance hinders their high-voltage operation. Extending the intrinsic electrochemical stability of ether-based electrolytes to construct stable-cycling high-energy-density lithium-ion batteries is challenging but rewarding. Herein, the anion-solvent interactions were concerned as the key point to optimize the anodic stability of the ether-based electrolytes and an optimized interphase was realized on both pure-SiOx anodes and LiNi0.8Mn0.1Co0.1O2 cathodes. Specifically, the small-anion-size LiNO3 and tetrahydrofuran with high dipole moment to dielectric constant ratio realized strengthened anion-solvent interactions, which enhance the oxidative stability of the electrolyte. The designed ether-based electrolyte enabled a stable cycling performance over 500 cycles in pure-SiOx||LiNi0.8Mn0.1Co0.1O2 full cell, demonstrating its superior practical prospects. This work provides new insight into the design of new electrolytes for emerging high-energy density lithium-ion batteries through the regulation of interactions between species in electrolytes. 相似文献
5.
Yifeng Cheng Zhijie Wang Jinbiao Chen Yuanmao Chen Xi Ke Duojie Wu Qing Zhang Yuanmin Zhu Xuming Yang Meng Gu Zaiping Guo Zhicong Shi 《Angewandte Chemie (International ed. in English)》2023,62(30):e202305723
A stable solid electrolyte interphase (SEI) layer is crucial for lithium metal anode (LMA) to survive in long-term cycling. However, chaotic structures and chemical inhomogeneity of natural SEI make LMA suffering from exasperating dendrite growth and severe electrode pulverization, which hinder the practical application of LMAs. Here, we design a catalyst-derived artificial SEI layer with an ordered polyamide-lithium hydroxide (PA-LiOH) bi-phase structure to modulate ion transport and enable dendrite-free Li deposition. The PA-LiOH layer can substantially suppress the volume changes of LMA during Li plating/stripping cycles, as well as alleviate the parasitic reactions between LMA and electrolyte. The optimized LMAs demonstrate excellent stability in Li plating/stripping cycles for over 1000 hours at an ultra-high current density of 20 mA cm−2 in Li||Li symmetric cells. A high coulombic efficiency up to 99.2 % in Li half cells in additive-free electrolytes is achieved even after 500 cycles at a current density of 1 mA cm−2 with a capacity of 1 mAh cm−2. 相似文献
6.
Yiming Sui Prof. Xiulei Ji 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(2):e202312585
The narrow electrochemical stability window of water poses a challenge to the development of aqueous electrolytes. In contrast to non-aqueous electrolytes, the products of water electrolysis do not contribute to the formation of a passivation layer on electrodes. As a result, aqueous electrolytes require the reactions of additional components, such as additives and co-solvents, to facilitate the formation of the desired solid electrolyte interphase (SEI) on the anode and cathode electrolyte interphase (CEI) on the cathode. This review highlights the fundamental principles and recent advancements in generating electrolyte interphases in aqueous batteries. 相似文献
7.
Shiwei Tao Dr. Baris Demir Dr. Ardeshir Baktash Yutong Zhu Dr. Qingbing Xia Prof. Yalong Jiao Yuying Zhao Dr. Tongen Lin Dr. Ming Li Dr. Miaoqiang Lyu Prof. Ian Gentle Prof. Lianzhou Wang Dr. Ruth Knibbe 《Angewandte Chemie (International ed. in English)》2023,62(39):e202307208
The irreversibility of anion intercalation-deintercalation is a fundamental issue in determining the cycling stability of a dual-ion battery (DIB). In this work, we demonstrate that using a partially fluorinated carbonate solvent can drive a beneficial fluorinated secondary interphase layer formation. Such layer facilitates reversible anion (de−)intercalation processes by impeding solvent molecule co-intercalation and the associated graphite exfoliation. The enhanced reversibility of anion transport contributes to the overall cycling stability for a Zn-graphite DIB—a high Coulombic efficiency of 98.5 % after 800 cycles, with an attractive discharge capacity of 156 mAh g−1 and a mid-point discharge voltage of ≈1.7 V (at 0.1 A g−1). In addition, the formed fluorinated secondary interphase suppresses the self-discharge behavior, preserving 29 times of the capacity retention rate compared to the battery with a commonly used carbonate solvent, after standing for 24 hours. This work provides a simple and effective strategy for addressing the critical challenges in graphite-based DIBs and contributes to fundamental understanding to help accelerate their practical application. 相似文献
8.
Dr. Tao Ma Dr. Youxuan Ni Diantao Li Dr. Zhengtai Zha Dr. Song Jin Weijia Zhang Liqun Jia Qiong Sun Dr. Weiwei Xie Prof. Zhanliang Tao Prof. Jun Chen 《Angewandte Chemie (International ed. in English)》2023,62(43):e202310761
Despite carbonate electrolytes exhibiting good stability to sulfurized polyacrylonitrile (SPAN), their chemical incompatibility with lithium (Li) metal anode leads to poor electrochemical performance of Li||SPAN full cells. While the SPAN employs conventional ether electrolytes that suffer from the shuttle effect, leading to rapid capacity fading. Here, we tailor a dilute electrolyte based on a low solvating power ether solvent that is both compatible with SPAN and Li metal. Unlike conventional ether electrolytes, the weakly solvating ether electrolyte enables SPAN to undergo reversibly “solid–solid” conversion. It features an anion–rich solvation structure that allows for the formation of a robust cathode electrolyte interphase on the SPAN, effectively blocking the dissolution of polysulfides into the bulk electrolyte and avoiding the shuttle effect. What's more, the unique electrolyte chemistry endowed Li ions with fast electroplating kinetics and induced high reversibility Li deposition/stripping process from 25 °C to −40 °C. Based on tailored electrolyte, Li||SPAN full cells matched with high loading SPAN cathodes (≈3.6 mAh cm−2) and 50 μm Li foil can operate stably over a wide range of temperatures. Additionally, Li||SPAN pouch cell under lean electrolyte and 5 % excess Li conditions can continuously operate stably for over a month. 相似文献
9.
Hao Jia Ju-Myung Kim Peiyuan Gao Yaobin Xu Mark H. Engelhard Bethany E. Matthews Chongmin Wang Wu Xu 《Angewandte Chemie (International ed. in English)》2023,62(17):e202218005
Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs. 相似文献
10.
Shiyang Wang Suting Weng Xinpeng Li Yue Liu Xiangling Huang Yulin Jie Yuxue Pan Hongmin Zhou Prof. Shuhong Jiao Prof. Qi Li Prof. Xuefeng Wang Prof. Tao Cheng Prof. Ruiguo Cao Prof. Dongsheng Xu 《Angewandte Chemie (International ed. in English)》2023,62(50):e202313447
Ether-based electrolytes are considered as an ideal electrolyte system for sodium metal batteries (SMBs) due to their superior compatibility with the sodium metal anode (SMA). However, the selection principle of ether solvents and the impact on solid electrolyte interphase formation are still unclear. Herein, we systematically compare the chain ether-based electrolyte and understand the relationship between the solvation structure and the interphasial properties. The linear ether solvent molecules with different terminal group lengths demonstrate remarkably distinct solvation effects, thus leading to different electrochemical performance as well as deposition morphologies for SMBs. Computational calculations and comprehensive characterizations indicate that the terminal group length significantly regulates the electrolyte solvation structure and consequently influences the interfacial reaction mechanism of electrolytes on SMA. Cryogenic electron microscopy clearly reveals the difference in solid electrolyte interphase in various ether-based electrolytes. As a result, the 1,2-diethoxyethane-based electrolyte enables a high Coulombic efficiency of 99.9 %, which also realizes the stable cycling of Na||Na3V2(PO4)3 full cell with a mass loading of ≈9 mg cm−2 over 500 cycles. 相似文献
11.
Dr. Sailin Liu Dr. Jitraporn Vongsvivut Yanyan Wang Ruizhi Zhang Dr. Fuhua Yang Dr. Shilin Zhang Prof. Kenneth Davey Dr. Jianfeng Mao Prof. Zaiping Guo 《Angewandte Chemie (International ed. in English)》2023,62(4):e202215600
Zinc metal battery (ZMB) is promising as the next generation of energy storage system, but challenges relating to dendrites and corrosion of the zinc anode are restricting its practical application. Here, to stabilize Zn anode, we report a controlled electrolytic method for a monolithic solid-electrolyte interphase (SEI) via a high dipole moment solvent dimethyl methylphosphonate (DMMP). The DMMP-based electrolytes can generate a homogeneous and robust phosphate SEI (Zn3(PO4)2 and ZnP2O6). Benefiting from the protecting impact of this in situ monolithic SEI, the zinc electrode exhibits long-term cycling of 4700 h and a high Coulombic efficiency 99.89 % in Zn|Zn and Zn|Cu cell, respectively. The full V2O5|Zn battery with DMMP-H2O hybrid electrolyte exhibits a high capacity retention of 82.2 % following 4000 cycles under 5 A g−1. The first success in constructing the monolithic phosphate SEI will open a new avenue in electrolyte design for highly reversible and stable Zn metal anodes. 相似文献
12.
Tenghui Wang Butian Chen Chong Liu Taiguang Li Xiangfeng Liu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(16):e202400960
Polymer-inorganic composite electrolytes (PICE) have attracted tremendous attention in all-solid-state lithium batteries (ASSLBs) due to facile processability. However, the poor Li+ conductivity at room temperature (RT) and interfacial instability severely hamper the practical application. Herein, we propose a concept of competitive coordination induction effects (CCIE) and reveal the essential correlation between the local coordination structure and the interfacial chemistry in PEO-based PICE. CCIE introduction greatly enhances the ionic conductivity and electrochemical performances of ASSLBs at 30 °C. Owing to the competitive coordination (Cs+ … TFSI− … Li+, Cs+ … C−O−C … Li+ and 2,4,6-TFA … Li … TFSI−) from the competitive cation (Cs+ from CsPF6) and molecule (2,4,6-TFA: 2,4,6-trifluoroaniline), a multimodal weak coordination environment of Li+ is constructed enabling a high efficient Li+ migration at 30 °C (Li+ conductivity: 6.25×10−4 S cm−1; tLi + =0.61). Since Cs+ tends to be enriched at the interface, TFSI− and PF6− in situ form LiF-Li3N-Li2O-Li2S enriched solid electrolyte interface with electrostatic shielding effects. The assembled ASSLBs without adding interfacial wetting agent exhibit outstanding rate capability (LiFePO4: 147.44 mAh g−1@1 C and 107.41mAhg−1@2 C) and cycling stability at 30 °C (LiFePO4:94.65 %@200cycles@0.5 C; LiNi0.5Co0.2Mn0.3O2: 94.31 %@200 cycles@0.3 C). This work proposes a concept of CCIE and reveals its mechanism in designing PICE with high ionic conductivity as well as high interfacial compatibility at near RT for high-performance ASSLBs. 相似文献
13.
Yanlei Xiu Anna Mauri Dr. Sirshendu Dinda Dr. Yohanes Pramudya Ziming Ding Dr. Thomas Diemant Dr. Abhishek Sarkar Dr. Liping Wang Dr. Zhenyou Li Prof. Dr. Wolfgang Wenzel Prof. Dr. Maximilian Fichtner Dr. Zhirong Zhao-Karger 《Angewandte Chemie (International ed. in English)》2023,62(2):e202212339
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries. 相似文献
14.
Tuoya Naren Gui-Chao Kuang Ruheng Jiang Piao Qing Hao Yang Jialin Lin Yuejiao Chen Weifeng Wei Xiaobo Ji Libao Chen 《Angewandte Chemie (International ed. in English)》2023,62(26):e202305287
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm−2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes. 相似文献
15.
Prof. Xiaona Li Yang Xu Prof. Changtai Zhao Duojie Wu Dr. Limin Wang Matthew Zheng Xu Han Dr. Simeng Zhang Junyi Yue Prof. Biwei Xiao Dr. Wei Xiao Dr. Ligen Wang Prof. Tao Mei Prof. Meng Gu Prof. Jianwen Liang Prof. Xueliang Sun 《Angewandte Chemie (International ed. in English)》2023,62(48):e202306433
As exciting candidates for next-generation energy storage, all-solid-state lithium batteries (ASSLBs) are highly dependent on advanced solid-state electrolytes (SSEs). Here, using cost-effective LaCl3 and CeCl3 lattice (UCl3-type structure) as the host and further combined with a multiple-cation mixed strategy, we report a series of UCl3-type SSEs with high room-temperature ionic conductivities over 10−3 S cm−1 and good compatibility with high-voltage oxide cathodes. The intrinsic large-size hexagonal one-dimensional channels and highly disordered amorphous phase induced by multi-metal cation species are believed to trigger fast multiple ionic conductions of Li+, Na+, K+, Cu+, and Ag+. The UCl3-type SSEs enable a stable prototype ASSLB capable of over 3000 cycles and high reversibility at −30 °C. Further exploration of the brand-new multiple-cation mixed chlorides is likely to lead to the development of advanced halide SSEs suitable for ASSLBs with high energy density. 相似文献
16.
Juan Zhang Jia Chou Xiao-Xi Luo Dr. Yi-Ming Yang Ming-Yan Yan Prof. Di Jia Chao-Hui Zhang Ya-Hui Wang Wen-Peng Wang Shuang-Jie Tan Jun-Chen Guo Prof. Yao Zhao Prof. Fuyi Wang Prof. Sen Xin Prof. Li-Jun Wan Prof. Yu-Guo Guo 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(5):e202316087
Solid-state lithium-sulfur batteries have shown prospects as safe, high-energy electrochemical storage technology for powering regional electrified transportation. Owing to limited ion mobility in crystalline polymer electrolytes, the battery is incapable of operating at subzero temperature. Addition of liquid plasticizer into the polymer electrolyte improves the Li-ion conductivity yet sacrifices the mechanical strength and interfacial stability with both electrodes. In this work, we showed that by introducing a spherical hyperbranched solid polymer plasticizer into a Li+-conductive linear polymer matrix, an integrated dynamic cross-linked polymer network was built to maintain fully amorphous in a wide temperature range down to subzero. A quasi-solid polymer electrolyte with a solid mass content >90 % was prepared from the cross-linked polymer network, and demonstrated fast Li+ conduction at a low temperature, high mechanical strength, and stable interfacial chemistry. As a result, solid-state lithium-sulfur batteries employing the new electrolyte delivered high reversible capacity and long cycle life at 25 °C, 0 °C and −10 °C to serve energy storage at complex environmental conditions. 相似文献
17.
Viksit Kumar H. J. Bharathkumar Sangram D. Dongre Rajesh Gonnade Kothandam Krishnamoorthy Sukumaran Santhosh Babu 《Angewandte Chemie (International ed. in English)》2023,62(47):e202311657
Recently, chiral and nonplanar cutouts of graphene have been the favorites due to their unique optical, electronic, and redox properties and high solubility compared with their planar counterparts. Despite the remarkable progress in helicenes, π-extended heterohelicenes have not been widely explored. As an anode in a lithium-ion battery, the racemic mixture of π-extended double heterohelical nanographene containing thienothiophene core exhibited a high lithium storage capability, attaining a specific capacity of 424 mAh g−1 at 0.1 A g−1 with excellent rate capability and superior long-term cycling performance over 6000 cycles with negligible fade. As a first report, the π-extended helicene isomer (PP and MM), with the more interlayer distance that helps faster diffusion of ions, has exhibited a high capacity of 300 mAh g−1 at 2 A g−1 with long-term cycling performance over 1500 cycles compared to the less performing MP and PM isomer and racemic mixture (150 mAh g−1 at 2 A g−1). As supported by single-crystal X-ray analysis, a unique molecular design of nanographenes with a fixed (helical) molecular geometry, avoiding restacking of the layers, renders better performance as an anode in lithium-ion batteries. Interestingly, the recycled nanographene anode material displayed comparable performance. 相似文献
18.
Xinyang Yue Jing Zhang Yongteng Dong Yuanmao Chen Zhangqin Shi Xuejiao Xu Xunlu Li Prof. Zheng Liang 《Angewandte Chemie (International ed. in English)》2023,62(19):e202302285
The difficulties to identify the rate-limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating-reversible graphite anode is achieved via a localized high-concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high-rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF-rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self-made 1.2-Ah LiNi0.5Mn0.3Co0.2O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high-performance fast-charging batteries. 相似文献
19.
Xuejiao Xu Xinyang Yue Yuanmao Chen Zheng Liang 《Angewandte Chemie (International ed. in English)》2023,62(34):e202306963
Graphite anodes are prone to dangerous Li plating during fast charging, but the difficulty to identify the rate-limiting step has made a challenging to eliminate Li plating thoroughly. Thus, the inherent thinking on inhibiting Li plating needs to be compromised. Herein, an elastic solid electrolyte interphase (SEI) with uniform Li-ion flux is constructed on graphite anode by introducing a triglyme (G3)-LiNO3 synergistic additive (GLN) to commercial carbonate electrolyte, for realizing a dendrite-free and highly-reversible Li plating under high rates. The cross-linked oligomeric ether and Li3N particles derived from the GLN greatly improve the stability of the SEI before and after Li plating and facilitate the uniform Li deposition. When 51 % of lithiation capacity is contributed from Li plating, the graphite anode in the electrolyte with 5 vol.% GLN achieved an average 99.6 % Li plating reversibility over 100 cycles. In addition, the 1.2-Ah LiFePO4 | graphite pouch cell with GLN-added electrolyte stably operated over 150 cycles at 3 C, firmly demonstrating the promise of GLN in commercial Li-ion batteries for fast-charging applications. 相似文献
20.
Dr. Tong-Tong Zuo Dr. Felix Walther Jun Hao Teo Dr. Raffael Rueß Yubo Wang Prof. Marcus Rohnke Prof. Daniel Schröder Prof. Linda F. Nazar Prof. Jürgen Janek 《Angewandte Chemie (International ed. in English)》2023,62(7):e202213228
Lithium argyrodite-type electrolytes are regarded as promising electrolytes due to their high ionic conductivity and good processability. Chemical modifications to increase ionic conductivity have already been demonstrated, but the influence of these modifications on interfacial stability remains so far unknown. In this work, we study Li6PS5Cl and Li5.5PS4.5Cl1.5 to investigate the influence of halogenation on the electrochemical decomposition of the solid electrolyte and the chemical degradation mechanism at the cathode interface in depth. Electrochemical measurements, gas analysis and time-of-flight secondary ion mass spectrometry indicate that the Li5.5PS4.5Cl1.5 shows pronounced electrochemical decomposition at lower potentials. The chemical reaction at higher voltages leads to more gaseous degradation products, but a lower fraction of solid oxygenated phosphorous and sulfur species. This in turn leads to a decreased interfacial resistance and thus a higher cell performance. 相似文献