共查询到14条相似文献,搜索用时 0 毫秒
1.
Yating Li Zuhao Yu Prof. Jianhang Huang Prof. Yonggang Wang Prof. Yongyao Xia 《Angewandte Chemie (International ed. in English)》2023,62(47):e202309957
Problems of zinc anode including dendrite and hydrogen evolution seriously degrade the performance of zinc batteries. Solid electrolyte interphase (SEI), which plays a key role in achieving high reversibility of lithium anode in aprotic organic solvent, is also beneficial to performance improvement of zinc anode in aqueous electrolyte. However, various studies about interphase for zinc electrode is quite fragmented, and lack of deep understanding on root causes or general design rules for SEI construction. And water molecules with high reactivity brings serious challenge to the effective SEI construction. Here, we reviewed the brief development history of zinc batteries firstly, then summarized the approaches to construct SEI in aqueous electrolyte. Furthermore, the formation mechanisms behind approaches are systematically analyzed, together with discussion on the SEI components and evaluation on electrochemical performance of zinc anode with various types of SEI. Meanwhile, the challenge between lab and industrialization are also discussed. 相似文献
2.
Dr. Zachary T. Gossage Nanako Ito Prof. Tomooki Hosaka Prof. Ryoichi Tatara Prof. Shinichi Komaba 《Angewandte Chemie (International ed. in English)》2023,62(43):e202307446
The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6(OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈−1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from −0.9 V to <−1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures. 相似文献
3.
Dr. Enhui Wang Dr. Jing Wan Prof. Dr. Yu-Jie Guo Prof. Dr. Qianyu Zhang Wei-Huan He Chao-Hui Zhang Dr. Wan-Ping Chen Prof. Dr. Hui-Juan Yan Prof. Dr. Ding-Jiang Xue Dr. Tiantian Fang Prof. Dr. Fuyi Wang Prof. Dr. Rui Wen Prof. Dr. Sen Xin Prof. Dr. Ya-Xia Yin Prof. Dr. Yu-Guo Guo 《Angewandte Chemie (International ed. in English)》2023,62(4):e202216354
The interfacial stability is highly responsible for the longevity and safety of sodium ion batteries (SIBs). However, the continuous solid-electrolyte interphase(SEI) growth would deteriorate its stability. Essentially, the SEI growth is associated with the electron leakage behavior, yet few efforts have tried to suppress the SEI growth, from the perspective of mitigating electron leakage. Herein, we built two kinds of SEI layers with distinct growth behaviors, via the additive strategy. The SEI physicochemical features (morphology and componential information) and SEI electronic properties (LUMO level, band gap, electron work function) were investigated elaborately. Experimental and calculational analyses showed that, the SEI layer with suppressed growth delivers both the low electron driving force and the high electron insulation ability. Thus, the electron leakage is mitigated, which restrains the continuous SEI growth, and favors the interface stability with enhanced electrochemical performance. 相似文献
4.
Qian-Kui Zhang Shu-Yu Sun Dr. Ming-Yue Zhou Li-Peng Hou Jia-Lin Liang Shi-Jie Yang Dr. Bo-Quan Li Dr. Xue-Qiang Zhang Prof. Jia-Qi Huang 《Angewandte Chemie (International ed. in English)》2023,62(42):e202306889
The stability of high-energy-density lithium metal batteries depends on the uniformity of solid electrolyte interphase (SEI) on lithium metal anodes. Rationally improving SEI uniformity is hindered by poorly understanding the effect of structure and components of SEI on its uniformity. Herein, a bilayer structure of SEI formed by isosorbide dinitrate (ISDN) additives in localized high-concentration electrolytes was demonstrated to improve SEI uniformity. In the bilayer SEI, LiNxOy generated by ISDN occupies top layer and LiF dominates bottom layer next to anode. The uniformity of lithium deposition is remarkably improved with the bilayer SEI, mitigating the consumption rate of active lithium and electrolytes. The cycle life of lithium metal batteries with bilayer SEI is three times as that with common anion-derived SEI under practical conditions. A prototype lithium metal pouch cell of 430 Wh kg−1 undergoes 173 cycles. This work demonstrates the effect of a reasonable structure of SEI on reforming SEI uniformity. 相似文献
5.
Tuoya Naren Gui-Chao Kuang Ruheng Jiang Piao Qing Hao Yang Jialin Lin Yuejiao Chen Weifeng Wei Xiaobo Ji Libao Chen 《Angewandte Chemie (International ed. in English)》2023,62(26):e202305287
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm−2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes. 相似文献
6.
Shiyang Wang Suting Weng Xinpeng Li Yue Liu Xiangling Huang Yulin Jie Yuxue Pan Hongmin Zhou Prof. Shuhong Jiao Prof. Qi Li Prof. Xuefeng Wang Prof. Tao Cheng Prof. Ruiguo Cao Prof. Dongsheng Xu 《Angewandte Chemie (International ed. in English)》2023,62(50):e202313447
Ether-based electrolytes are considered as an ideal electrolyte system for sodium metal batteries (SMBs) due to their superior compatibility with the sodium metal anode (SMA). However, the selection principle of ether solvents and the impact on solid electrolyte interphase formation are still unclear. Herein, we systematically compare the chain ether-based electrolyte and understand the relationship between the solvation structure and the interphasial properties. The linear ether solvent molecules with different terminal group lengths demonstrate remarkably distinct solvation effects, thus leading to different electrochemical performance as well as deposition morphologies for SMBs. Computational calculations and comprehensive characterizations indicate that the terminal group length significantly regulates the electrolyte solvation structure and consequently influences the interfacial reaction mechanism of electrolytes on SMA. Cryogenic electron microscopy clearly reveals the difference in solid electrolyte interphase in various ether-based electrolytes. As a result, the 1,2-diethoxyethane-based electrolyte enables a high Coulombic efficiency of 99.9 %, which also realizes the stable cycling of Na||Na3V2(PO4)3 full cell with a mass loading of ≈9 mg cm−2 over 500 cycles. 相似文献
7.
Dr. Zeheng Li Yu-Xing Yao Dr. Shuo Sun Dr. Cheng-Bin Jin Nan Yao Prof. Chong Yan Prof. Qiang Zhang 《Angewandte Chemie (International ed. in English)》2023,62(37):e202303888
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application. 相似文献
8.
Dr. Dongdong Wang Dan Lv Huili Peng Cheng Wang Hongxia Liu Prof. Jian Yang Prof. Yitai Qian 《Angewandte Chemie (International ed. in English)》2023,62(38):e202310290
Stable Zn anodes with a high utilization efficiency pose a challenge due to notorious dendrite growth and severe side reactions. Therefore, electrolyte additives are developed to address these issues. However, the additives are always consumed by the electrochemical reactions over cycling, affecting the cycling stability. Here, hexamethylphosphoric triamide (HMPA) is reported as an electrolyte additive for achieving stable cycling of Zn anodes. HMPA reshapes the solvation structures and promotes anion decomposition, leading to the in situ formation of inorganic-rich solid-electrolyte-interphase. More interestingly, this anion decomposition does not involve HMPA, preserving its long-term impact on the electrolyte. Thus, the symmetric cells with HMPA in the electrolyte survive ≈500 h at 10 mA cm−2 for 10 mAh cm−2 or ≈200 h at 40 mA cm−2 for 10 mAh cm−2 with a Zn utilization rate of 85.6 %. The full cells of Zn||V2O5 exhibit a record-high cumulative capacity even under a lean electrolyte condition (E/C ratio=12 μL mAh−1), a limited Zn supply (N/P ratio=1.8) and a high areal capacity (6.6 mAh cm−2). 相似文献
9.
Huili Peng Chunting Wang Dongdong Wang Xinxin Song Chenghui Zhang Jian Yang 《Angewandte Chemie (International ed. in English)》2023,62(34):e202308068
Zn metal as one of the promising anodes of aqueous batteries possesses notable advantages, but it faces severe challenges from severe side reactions and notorious dendrite growth. Here, ultrathin nanosheets of α-zirconium phosphate (ZrP) are explored as an electrolyte additive. The nanosheets not only create a dynamic and reversible interphase on Zn but also promote the Zn2+ transportation in the electrolyte, especially in the outer Helmholtz plane near ZrP. Benefited from the enhanced kinetics and dynamic interphase, the pouch cells of Zn||LiMn2O4 using this electrolyte remarkably improve electrochemical performance under harsh conditions, i.e. Zn powders as the Zn anode, high mass loading, and wide temperatures. The results expand the materials available for this dynamic interphase, provide an insightful understanding of the enhanced charge transfer in the electrolyte, and realize the combination of dynamic interphase and enhanced kinetics for all-climate performance. 相似文献
10.
Yanlei Xiu Anna Mauri Dr. Sirshendu Dinda Dr. Yohanes Pramudya Ziming Ding Dr. Thomas Diemant Dr. Abhishek Sarkar Dr. Liping Wang Dr. Zhenyou Li Prof. Dr. Wolfgang Wenzel Prof. Dr. Maximilian Fichtner Dr. Zhirong Zhao-Karger 《Angewandte Chemie (International ed. in English)》2023,62(2):e202212339
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries. 相似文献
11.
Yulu Yang Huaping Wang Chunlei Zhu Prof. Jianmin Ma 《Angewandte Chemie (International ed. in English)》2023,62(22):e202300057
Lithium metal batteries (LMBs) comprising Li metal anode and high-voltage nickel-rich cathode could potentially realize high capacity and power density. However, suitable electrolytes to tolerate the oxidation on the cathode at high cut-off voltage are urgently needed. Herein, we present an armor-like inorganic-rich cathode electrolyte interphase (CEI) strategy for exploring oxidation-resistant electrolytes for sustaining 4.8 V Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) batteries with pentafluorophenylboronic acid (PFPBA) as the additive. In such CEI, the armored lithium borate surrounded by CEI up-layer represses the dissolution of inner CEI moieties and also improves the Li+ conductivity of CEI while abundant LiF is distributed over whole CEI to enhance the mechanical stability and Li+ conductivity compared with polymer moieties. With such robust Li+ conductive CEI, the Li||NCM622 battery delivered excellent stability at 4.6 V cut-off voltage with 91.2 % capacity retention after 400 cycles. The excellent cycling performance was also obtained even at 4.8 V cut-off voltage. 相似文献
12.
Dr. Tong-Tong Zuo Dr. Felix Walther Jun Hao Teo Dr. Raffael Rueß Yubo Wang Prof. Marcus Rohnke Prof. Daniel Schröder Prof. Linda F. Nazar Prof. Jürgen Janek 《Angewandte Chemie (International ed. in English)》2023,62(7):e202213228
Lithium argyrodite-type electrolytes are regarded as promising electrolytes due to their high ionic conductivity and good processability. Chemical modifications to increase ionic conductivity have already been demonstrated, but the influence of these modifications on interfacial stability remains so far unknown. In this work, we study Li6PS5Cl and Li5.5PS4.5Cl1.5 to investigate the influence of halogenation on the electrochemical decomposition of the solid electrolyte and the chemical degradation mechanism at the cathode interface in depth. Electrochemical measurements, gas analysis and time-of-flight secondary ion mass spectrometry indicate that the Li5.5PS4.5Cl1.5 shows pronounced electrochemical decomposition at lower potentials. The chemical reaction at higher voltages leads to more gaseous degradation products, but a lower fraction of solid oxygenated phosphorous and sulfur species. This in turn leads to a decreased interfacial resistance and thus a higher cell performance. 相似文献
13.
Na Yang Yujie Cui Hang Su Jiaying Peng Yongzheng Shi Jin Niu Feng Wang 《Angewandte Chemie (International ed. in English)》2023,62(28):e202304339
Although high ionic conductivities have been achieved in most solid-state electrolytes used in lithium metal batteries (LMBs), rapid and stable lithium-ion transport between solid-state electrolytes and lithium anodes remains a great challenge due to the high interfacial impedances and infinite volume changes of metallic lithium. In this work, a chemical vapor-phase fluorination approach is developed to establish a lithiophilic surface on rubber-derived electrolytes, which results in the formation of a resilient, ultrathin, and mechanically integral LiF-rich layer after electrochemical cycling. The resulting ultraconformal layer chemically connects the electrolyte and lithium anode and maintains dynamic contact during operation, thus facilitating rapid and stable lithium-ion transport across interfaces, as well as promoting uniform lithium deposition and inhibiting side reactions between electrolyte components and metallic lithium. LMBs containing the novel electrolyte have an ultralong cycling life of 2500 h and deliver a high critical current density of 1.1 mA cm−2 in lithium symmetric cells as well as showing good stability over 300 cycles in a full cell. 相似文献