首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
In energy storage materials, large surface areas and oriented structures are key architecture design features for improving performance through enhanced electrolyte access and efficient electron conduction pathways. Layered hydroxides provide a tunable materials platform with opportunities for achieving such nanostructures via bottom‐up syntheses. These nanostructures, however, can degrade in the presence of the alkaline electrolytes required for their redox‐based energy storage. A layered Co(OH)2–organic hybrid material that forms a hierarchical structure consisting of micrometer‐long, 30 nm diameter tubes with concentric curved layers of Co(OH)2 and 1‐pyrenebutyric acid is reported. The nanotubular structure offers high surface area as well as macroscopic orientation perpendicular to the substrate for efficient electron transfer. Using a comparison with flat films of the same composition, it is demonstrated that the superior performance of the nanotubular films is the result of a large accessible surface area for redox activity. It is found that the organic molecules used to template nanotubular growth also impart stability to the hybrid when present in the alkaline environments necessary for redox function.  相似文献   

2.
3.
Nitrogen‐doped carbon materials are proposed as promising electrocatalysts for the carbon dioxide reduction reaction (CRR), which is essential for renewable energy conversion and environmental remediation. Unfortunately, the unclear cognition on the CRR active site (or sites) hinders further development of high‐performance electrocatalysts. Herein, a series of 3D nitrogen‐doped graphene nanoribbon networks (N‐GRW) with tunable nitrogen dopants are designed to unravel the site‐dependent CRR activity/selectivity. The N‐GRW catalyst exhibits superior CO2 electrochemical reduction activity, reaching a specific current of 15.4 A gcatalyst?1 with CO Faradaic efficiency of 87.6% at a mild overpotential of 0.49 V. Based on X‐ray photoelectron spectroscopy measurements, it is experimentally demonstrated that the pyridinic N site in N‐GRW serves as the active site for CRR. In addition, the Gibbs free energy calculated by density functional theory further illustrates the pyridinic N as a more favorable site for the CO2 adsorption, *COOH formation, and *CO removal in CO2 reduction.  相似文献   

4.
The practical applications of CO2 electroreduction to CO driven by renewable electricity should simultaneously meet the requests of industrial-level CO partial current density (JCO) at least 100 mA cm−2, wide potential window of high CO faradic efficiency (FECO), and low cost. Herein, a new strategy is reported to construct porous hierarchical Ni/N/C single-site catalyst with excellent catalytic activity via coating Ni-containing ZIF-8 on mesostructured basic magnesium carbonate template followed by pyrolysis. The abundant micropores facilitate the formation of numerous edge-hosted Ni-N4 sites with high intrinsic activity, and the interconnected macro/mesopores much promote CO2 delivery and CO release for the full expression of intrinsic activity. Consequently, the catalyst exhibits the industrial-level JCO of 105–462 mA cm−2 at the potential range of −0.6∼−1.3 V with ultra-wide high FECO plateau (>90%@−0.4∼−1.3 V), showing great promise for practical application. This study provides a general synthetic strategy to explore high-performance hierarchical M/N/C electrocatalysts.  相似文献   

5.
To improve the Li-ion diffusion and extreme-environment performance of LiFePO4 (LFP) lithium-ion batteries, a composite cathode material is fabricated using ultra-fine nano-Mg(OH)2 (MH). First, a flexible confined space is designed in the local area of the cathode surface, through the transition of charged xanthan gum polymer molecules under electric field force and the self-assembly of the xanthan gum network. Then, the 20 nm nano-Mg(OH)2 is prepared through cathodic electrodeposition within the local flexible confined space, and subsequent in situ surface modification as it traverses the xanthan gum network under gravity. LFP-MH significantly changes the density and homogeneity of the cathode electrolyte interphase film and improves the electrolyte affinity. The Li||LFP-MH half-cell demonstrates excellent rate capability (110 mAh g−1 at 5 C) and long-term cycle performance (116.6 mAh g−1 at 1 C after 1000 cycles), and maintains over 100 mAh g−1 after 150 cycles at 60 °C, as well as no structural collapse of the cathode material after 400 cycles at 5 V high cut-off voltage. The cell also shows an obvious decrease in inner resistance after 100 cycles (99.53/133.12 Ω). This work provides a significant advancement toward LiFePO4 lithium-ion batteries with excellent electrochemical performance and tolerance to extreme-environment.  相似文献   

6.
7.
Various clean energy storage and conversion systems highly depend on rational design of efficient electrocatalysts for oxygen reactions. Increasing both gas molecular diffusion and intrinsic activity is critical to boosting its efficiency for bifunctional oxygen electrocatalysis. However, controllable synthesis of catalysts that combines gas molecular diffusion and intrinsic activity remains a fundamental challenge. Herein, a two-step synthetic strategy is adopted to fabricate a composite oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional catalyst (P-Ag-Co(OH)2), of which, atomic Ag is anchored in reactive oxygen atoms around nanopores of Co(OH)2 nanosheets. Abundant nanopores provide enough gas molecular diffusion channels, and the special Ag-O-Co-OH catalytic groups around nanopores display high intrinsic catalytic activity, which jointly result in an excellent ORR/OER performance. In alkaline electrolyte, P-Ag-Co(OH)2 displays a high half-wave potential (0.902 V versus RHE) for ORR, and a low overpotential (235 mV at 10 mA cm−2) for OER, which is superior to non-noble catalysts in previous studies and Pt/C (Ir/C) catalyst. At the same time, the single-cell zinc-air battery is prepared with an extremely high discharge peak power density of 435 mW cm−2 and excellent discharge–charge cycle stability.  相似文献   

8.
9.
Well‐controlled core–shell hierarchical nanostructures based on oxyfluoride and hydroxide are for the first time rationally designed and synthesized via a simple solvothermal and chemical precipitation route, in which FeOF nanorod acts as core and porous Ni(OH)2 nanosheets as shell. When evaluated as electrodes for supercapacitors, a high specific capacitance of 1452 F g?1 can be obtained at a current density of 1 A g?1. Even as the current density increases to 10 A g?1, the core–shell hybrid still reserves a noticeable capacitance of 1060 F g?1, showing an excellent rate capacity. Furthermore, all‐solid‐state flexible asymmetric supercapacitor based on the FeOF/Ni(OH)2 hybrid as a positive electrode and activated carbon as a negative electrode shows high power density, high energy density, and long cycling lifespan. The excellent electrochemical performance of the FeOF/Ni(OH)2 core–shell hybrid is ascribed to the unique microstructure and synergistic effects. FeOF nanorod from FeF3 by partial substitution of fluorine with oxygen behaves as a low intrinsic resistance, thus facilitating charge transfer processes. While the hierarchical Ni(OH)2 nanosheets with large surface area provide enough active sites for redox chemical reactions, leading to greatly enhanced electrochemical activity. The well‐controllable oxyfluoride/hydroxide hybrid is inspiring, opening up a new way to design new electrodes for next‐generation all‐solid‐state supercapacitors.  相似文献   

10.
UiO‐66, a zirconium based metal–organic framework, is incorporated with nanosized carbon nitride nanosheets via a facile electrostatic self‐assembly method. This hybrid structure exhibits a large surface area and strong CO2 capture ability due to the introduction of UiO‐66. We demonstrate that electrons from the photoexcited carbon nitride nanosheet can transfer to UiO‐66, which can substantially suppress electron–hole pair recombination in the carbon nitride nanosheet, as well as supply long‐lived electrons for the reduction of CO2 molecules that are adsorbed in UiO‐66. As a result, the UiO‐66/carbon nitride nanosheet heterogeneous photocatalyst exhibits a much higher photocatalytic activity for the CO2 conversion than that of bare carbon nitride nanosheets. We believe this self‐assembly method can be extended to other carbon nitride nanosheet loaded materials.  相似文献   

11.
Increasing global challenges such as climate change, environmental pollution, and energy shortage have stimulated the worldwide explorations into novel and clean materials for their applications in the capture of carbon dioxide, a major greenhouse gas, and toxic pollutants, energy conversion, and storage. In this study, two microstructured carbons, namely N‐doped pillaring layered carbon (NC) and N, S codoped honeycomb carbon (NSC), have been fabricated through a one‐pot pyrolysis process of a mixture containing glucose, sodium bicarbonate, and urea or thiourea. The heteroatom doping is found to induce tailored microstructures featuring highly interconnected pore frameworks, high sp2‐C ratios, and high surface areas. The formation mechanism of the varying pore frameworks is believed to be hydrogen‐bond interactions. NSC displays a similar CO2 adsorption capacity (4.7 mmol g?1 at 0 °C), a better CO2/N2 selectivity, and higher activity in oxygen reduction reaction as compared with NC‐3 (the NC sample with the highest N content of 7.3%). NSC favors an efficient four‐electron reduction pathway and presents better methanol tolerance than Pt/C in alkaline media. The porous carbons also exhibit excellent rate performance as supercapacitors.  相似文献   

12.
Outstanding electrocatalysts for high-efficiency water splitting demand not only the high intrinsic activity determined by the electronic structure but also a favorable mass transfer (electrolyte diffusion and bubble desorption) and strong structural stability. Here, a 3D core–shell electrocatalyst consisting of Co(OH)2 cavity array-encapsulated NiMo alloy on the flexible carbon cloth substrate (Co(OH)2/NiMo CA@CC) is proposed. Density functional theory reveals that coupling NiMo with Co(OH)2 can better optimize the water adsorption/dissociation and hydrogen adsorption energies in hydrogen evolution reaction, and also accelerate the kinetics of oxygen evolution reaction. Based on this, the open porous structure of the outer Co(OH)2 cavity array further promotes the diffusion of the electrolyte into the heterogeneous interface between NiMo and Co(OH)2, significantly shortening the electron transfer pathways and exposing multiple active sites. In addition, the macroporous array structure accelerates the bubble evolution and desorption process, thus ensuring a rapid mass transfer. When served as bifunctional electrocatalysts toward alkaline overall water splitting, Co(OH)2/NiMo CA@CC delivers a current density of 10 mA cm−2 at a low cell voltage of 1.52 V. Results support the multiscale optimization of the surface/interface engineering induced by the macroporous array.  相似文献   

13.
14.
15.
The efficiency of water splitting is largely hindered by the sluggish kinetics of the oxygen evolution reaction. Cobalt-based (oxy)hydroxides are promising electrocatalysts, but their performance is still under the expected goal due to the restricted active sites and intrinsic activity. Herein, Co80Fe20(OH)(OCH3) (CoFeMe) is synthesized with intercalation and rich vacancies by a cation exsolution process in a one-step solve-thermal reaction. With the help of the Fe incorporation, the specific surface area of CoFeMe increases to 101.6 m2 g−1, which is six times that of Co(OH)(OCH3) (CoMe) (16.5 m2 g−1). Also, the induced rich vacancies are traced in the X-ray absorption spectra of CoFeMe. Because of the synergistic effect between the intercalation, Fe incorporation and vacancies, the overpotential of CoFeMe is only 240 mV to drive the current density to 10 mA cm−2, which is reduced 110 mV compared with that of pristine CoMe (350 mV).  相似文献   

16.
17.
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号