首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of efficient electrocatalysts to generate key *NH2 and *CO intermediates is crucial for ambient urea electrosynthesis with nitrate (NO3) and carbon dioxide (CO2). Here we report a liquid-phase laser irradiation method to fabricate symbiotic graphitic carbon encapsulated amorphous iron and iron oxide nanoparticles on carbon nanotubes (Fe(a)@C-Fe3O4/CNTs). Fe(a)@C-Fe3O4/CNTs exhibits superior electrocatalytic activity toward urea synthesis using NO3 and CO2, affording a urea yield of 1341.3±112.6 μg h−1 mgcat−1 and a faradic efficiency of 16.5±6.1 % at ambient conditions. Both experimental and theoretical results indicate that the formed Fe(a)@C and Fe3O4 on CNTs provide dual active sites for the adsorption and activation of NO3 and CO2, thus generating key *NH2 and *CO intermediates with lower energy barriers for urea formation. This work would be helpful for design and development of high-efficiency dual-site electrocatalysts for ambient urea synthesis.  相似文献   

2.
Mo- and Fe-containing enzymes catalyze the reduction of nitrate and nitrite ions in nature. Inspired by this activity, we study here the nitrate reduction reaction (NO3RR) catalyzed by an Fe-substituted two-dimensional molybdenum carbide of the MXene family, viz., Mo2CTx : Fe (Tx are oxo, hydroxy and fluoro surface termination groups). Mo2CTx : Fe contains isolated Fe sites in Mo positions of the host MXene (Mo2CTx) and features a Faradaic efficiency (FE) and an NH3 yield rate of 41 % and 3.2 μmol h−1 mg−1, respectively, for the reduction of NO3 to NH4+ in acidic media and 70 % and 12.9 μmol h−1 mg−1 in neutral media. Regardless of the media, Mo2CTx : Fe outperforms monometallic Mo2CTx owing to a more facile reductive defunctionalization of Tx groups, as evidenced by in situ X-ray absorption spectroscopy (Mo K-edge). After surface reduction, a Tx vacancy site binds a nitrate ion that subsequently fills the vacancy site with O* via oxygen transfer. Density function theory calculations provide further evidence that Fe sites promote the formation of surface O vacancies, which are identified as active sites and that function in NO3RR in close analogy to the prevailing mechanism of the natural Mo-based nitrate reductase enzymes.  相似文献   

3.
Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust “quasi-solid–gas” state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 μg h−1 mg−1cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 yield rate up to 15.7 μg h−1 mg−1cat. and FE up to 3.4 % in nitrogen oxidation reaction).  相似文献   

4.
Electrochemical conversion of nitrate to ammonia is an appealing way for small-scale and decentralized ammonia synthesis and waste nitrate treatment. Currently, strategies to enhance the reaction performance through elaborate catalyst design have been well developed, but it is still of challenge to realize the promotion of reactivity and selectivity at the same time. Instead, a facile method of catalyst modification with ionic liquid to modulate the electrode surface microenvironment that mimic the role of the natural MoFe protein environment is found effective for the simultaneous improvement of NH3 yield rate and Faradaic efficiency (FE) at a low NaNO3 concentration of 500 ppm. Protic ionic liquid (PIL) N-butylimidazolium bis(trifluoromethylsulfonyl)imide ([Bim]NTf2) modified Co3O4−x is fabricated and affords the NH3 yield rate and FE of 30.23±4.97 mg h−1 mgcat.−1 and 84.74±3.43 % at −1.71 and −1.41 V vs. Ag/AgCl, respectively, outperforming the pristine Co3O4−x. Mechanistic and theoretical studies reveal that the PIL modification facilitates the adsorption and activation of NO3 as well as the NO3-to-NH3 conversion and inhibits hydrogen evolution reaction competition via enhancing the Lewis acidity of the Co center, shuttling protons, and constructing a hydrogen bonded and hydrophobic electrode surface microenvironment.  相似文献   

5.
We propose the pseudobrookite Fe2TiO5 nanofiber with abundant oxygen vacancies as a new electrocatalyst to ambiently reduce nitrate to ammonia. Such catalyst achieves a large NH3 yield of 0.73 mmol h−1 mg−1cat. and a high Faradaic Efficiency (FE) of 87.6 % in phosphate buffer saline solution with 0.1 M NaNO3, which is lifted to 1.36 mmol h−1 mg−1cat. and 96.06 % at −0.9 V vs. RHE for nitrite conversion to ammonia in 0.1 M NaNO2. It also shows excellent electrochemical durability and structural stability. Theoretical calculation reveals the enhanced conductivity of this catalyst and an extremely low free energy of −0.28 eV for nitrate adsorption at the presence of vacant oxygen.  相似文献   

6.
Electrochemical N2 reduction reactions (NRR) and the N2 oxidation reaction (NOR), using H2O and N2, are a sustainable approach to N2 fixation. To date, owing to the chemical inertness of nitrogen, emerging electrocatalysts for the electrochemical NRR and NOR at room temperature and atmospheric pressure remain largely underexplored. Herein, a new-type Fe-SnO2 was designed as a Janus electrocatalyst for achieving highly efficient NRR and NOR catalysis. A high NH3 yield of 82.7 μg h−1 mgcat.−1 and a Faraday efficiency (FE) of 20.4 % were obtained for NRR. This catalyst can also serve as an excellent NOR electrocatalyst with a NO3 yields of 42.9 μg h−1 mgcat.−1 and a FE of 0.84 %. By means of experiments and DFT calculations, it is revealed that the oxygen vacancy-anchored single-atom Fe can effectively adsorb and activate chemical inert N2 molecules, lowering the energy barrier for the vital breakage of N≡N and resulting in the enhanced N2 fixation performance.  相似文献   

7.
We report an oxygen vacancy (Vo)-rich metallic MoO2−x nano-sea-urchin with partially occupied band, which exhibits super CO2 (even directly from the air) photoreduction performance under UV, visible and near-infrared (NIR) light illumination. The Vo-rich MoO2−x nano-sea-urchin displays a CH4 evolution rate of 12.2 and 5.8 μmol gcatalyst−1 h−1 under full spectrum and NIR light illumination in concentrated CO2, which is ca. 7- and 10-fold higher than the Vo-poor MoO2−x, respectively. More interestingly, the as-developed Vo-rich MoO2−x nano-sea-urchin can even reduce CO2 directly from the air with a CO evolution rate of 6.5 μmol gcatalyst−1 h−1 under NIR light illumination. Experiments together with theoretical calculations demonstrate that the oxygen vacancy in MoO2−x can facilitate CO2 adsorption/activation to generate *COOH as well as the subsequent protonation of *CO towards the formation of CH4 because of the formation of a highly stable Mo−C−O−Mo intermediate.  相似文献   

8.
Single-atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single-atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single-atom electrocatalyst supported on low-cost, nitrogen-free lignocellulose-derived carbon. The extended X-ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe-(O-C2)4 coordination configuration. Density functional theory calculations identify Fe-(O-C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h−1 mgcat.−1 (5350 μg h−1 mgFe−1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h−1 mgcat.−1 (51 283 μg h−1 mgFe−1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode.  相似文献   

9.
The renewable-energy-powered electroreduction of nitrate (NO3) to ammonia (NH3) has garnered significant interest as an eco-friendly and promising substitute for the Haber–Bosch process. However, the sluggish kinetics hinders its application at a large scale. Herein, we first calculated the N-containing species (*NO3 and *NO2) binding energy and the free energy of the hydrogen evolution reaction over Cu with different metal dopants, and it was shown that Zn was a promising candidate. Based on the theoretical study, we designed and synthesized Zn-doped Cu nanosheets, and the as-prepared catalysts demonstrated excellent performance in NO3-to-NH3. The maximum Faradaic efficiency (FE) of NH3 could reach 98.4 % with an outstanding yield rate of 5.8 mol g−1 h−1, which is among the best results up to date. The catalyst also had excellent cycling stability. Meanwhile, it also presented a FE exceeding 90 % across a wide potential range and NO3 concentration range. Detailed experimental and theoretical studies revealed that the Zn doping could modulate intermediates adsorption strength, enhance NO2 conversion, change the *NO adsorption configuration to a bridge adsorption, and decrease the energy barrier, leading to the excellent catalytic performance for NO3-to-NH3.  相似文献   

10.
The conventional industrial production of nitrogen-containing fertilizers, such as urea and ammonia, relies heavily on energy-intensive processes, accounting for approximately 3 % of global annual CO2 emissions. Herein, we report a sustainable electrocatalytic approach that realizes direct and selective synthesis of urea and ammonia from co-reduction of CO2 and nitrates under ambient conditions. With the assistance of a copper (Cu)-based salphen organic catalyst, outstanding urea (3.64 mg h−1 mgcat−1) and ammonia (9.73 mg h−1 mgcat−1) yield rates are achieved, in addition to a remarkable Faradaic efficiency of 57.9±3 % for the former. This work proposes an appealing sustainable route to converting greenhouse gas and waste nitrates by renewable energies into value-added fertilizers.  相似文献   

11.
Electrochemical conversion of nitrate (NO3) into ammonia (NH3) represents a potential way for achieving carbon-free NH3 production while balancing the nitrogen cycle. Herein we report a high-performance Cu nanosheets catalyst which delivers a NH3 partial current density of 665 mA cm−2 and NH3 yield rate of 1.41 mmol h−1 cm−2 in a flow cell at −0.59 V vs. reversible hydrogen electrode. The catalyst showed a high stability for 700 h with NH3 Faradaic efficiency of ≈88 % at 365 mA cm−2. In situ spectroscopy results verify that Cu nanosheets are in situ derived from the as-prepared CuO nanosheets under electrochemical NO3 reduction reaction conditions. Electrochemical measurements and density functional theory calculations indicate that the high performance is attributed to the tandem interaction of Cu(100) and Cu(111) facets. The NO2 generated on the Cu(100) facets is subsequently hydrogenated on the Cu(111) facets, thus the tandem catalysis promotes the crucial hydrogenation of *NO to *NOH for NH3 production.  相似文献   

12.
Electrochemical N2 reduction reactions (NRR) and the N2 oxidation reaction (NOR), using H2O and N2, are a sustainable approach to N2 fixation. To date, owing to the chemical inertness of nitrogen, emerging electrocatalysts for the electrochemical NRR and NOR at room temperature and atmospheric pressure remain largely underexplored. Herein, a new‐type Fe‐SnO2 was designed as a Janus electrocatalyst for achieving highly efficient NRR and NOR catalysis. A high NH3 yield of 82.7 μg h?1 mgcat.?1 and a Faraday efficiency (FE) of 20.4 % were obtained for NRR. This catalyst can also serve as an excellent NOR electrocatalyst with a NO3? yields of 42.9 μg h?1 mgcat.?1 and a FE of 0.84 %. By means of experiments and DFT calculations, it is revealed that the oxygen vacancy‐anchored single‐atom Fe can effectively adsorb and activate chemical inert N2 molecules, lowering the energy barrier for the vital breakage of N≡N and resulting in the enhanced N2 fixation performance.  相似文献   

13.
Currently, NH3 production primarily depends on the Haber–Bosch process, which operates at elevated temperatures and pressures and leads to serious CO2 emissions. Electrocatalytic N2 reduction offers an environmentally benign approach for the sustainable synthesis of NH3 under ambient conditions. This work reports the development of biomass-derived amorphous oxygen-doped carbon nanosheet (O−CN) using tannin as the precursor. As a metal-free electrocatalyst for N2-to-NH3 conversion, such O−CN shows high catalytic performances, achieving a large NH3 yield of 20.15 μg h−1 mg−1cat. and a high Faradic efficiency of 4.97 % at −0.6 V vs. reversible hydrogen electrode (RHE) in 0.1 m HCl at ambient conditions. Remarkably, it also exhibits high electrochemical selectivity and durability.  相似文献   

14.
Electrochemically converting NO3 into NH3 offers a promising route for water treatment. Nevertheless, electroreduction of dilute NO3 is still suffering from low activity and/or selectivity. Herein, B as a modifier was introduced to tune electronic states of Cu and further regulate the performance of electrochemical NO3 reduction reaction (NO3RR) with dilute NO3 concentration (≤100 ppm NO3−N). Notably, a linear relationship was established by plotting NH3 yield vs. the oxidation state of Cu, indicating that the increase of Cu+ content leads to an enhanced NO3-to-NH3 conversion activity. Under a low NO3−N concentration of 100 ppm, the optimal Cu(B) catalyst displays a 100 % NO3-to-NH3 conversion at −0.55 to −0.6 V vs. RHE, and a record-high NH3 yield of 309 mmol h−1 gcat−1, which is more than 25 times compared with the pristine Cu nanoparticles (12 mmol h−1 gcat−1). This research provides an effective method for conversion of dilute NO3 to NH3, which has certain guiding significance for the efficient and green conversion of wastewater in the future.  相似文献   

15.
The electrocatalytic nitrate reduction reaction (NO3RR) enables the reduction of nitrate to ammonium ions under ambient conditions. It was considered as an alternative reaction for the production of ammonia (NH3) in recent years. In this paper, we report that the Fe doping CoS2 nanoarrays can effectively catalyze the formation of NH3 from nitrate (NO3) under ambient conditions. This is mainly due to the increase of the NO3 reaction active site by Fe doping and the porous nanostructure of the catalyst, which greatly improves the catalytic activity. Specifically, at −0.9 V vs. RHE, the NH3 yield rate (RNH3) of Fe−CoS2/CC is 17.8×10−2 mmol h−1 cm−2 with Faraday Efficiency (FE) of 88.93 %. Besides, such catalyst shows good durability and catalytic stability, which provides the possibility for the future application of electrocatalytic NH3 production.  相似文献   

16.
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3RR, showing a maximum NH3-Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h−1 cm−2 at −0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 to form intermediates, while Fe sites dissociate H2O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3-to-NH3 conversion.  相似文献   

17.
The direct electrochemical nitric oxide reduction reaction (NORR) is an attractive technique for converting NO into NH3 with low power consumption under ambient conditions. Optimizing the electronic structure of the active sites can greatly improve the performance of electrocatalysts. Herein, we prepare body-centered cubic RuGa intermetallic compounds (i.e., bcc RuGa IMCs) via a substrate-anchored thermal annealing method. The electrocatalyst exhibits a remarkable NH4+ yield rate of 320.6 μmol h−1 mg−1Ru with the corresponding Faradaic efficiency of 72.3 % at very low potential of −0.2 V vs. reversible hydrogen electrode (RHE) in neutral media. Theoretical calculations reveal that the electron-rich Ru atoms in bcc RuGa IMCs facilitate the adsorption and activation of *HNO intermediate. Hence, the energy barrier of the potential-determining step in NORR could be greatly reduced.  相似文献   

18.
Atomically dispersed metal catalysts show potential advantages in N2 reduction reaction (NRR) due to their excellent activity and efficient metal utilization. Unfortunately, the reported catalysts usually exhibit unsatisfactory NRR activity due to their poor N2 adsorption and activation. Herein, we report a novel Sn atomically dispersed protuberance (ADP) by coordination with substrate C and O to induce positive charge accumulation on Sn site for improving its N2 adsorption, activation and NRR performance. The extended X-ray absorption fine structure (EXAFS) spectra confirmed the local coordination structure of the Sn ADPs. NRR activity was significantly promoted via Sn ADPs, exhibiting a remarkable NH3 yield (RNH3) of 28.3 μg h−1 mgcat−1 (7447 μg h−1 mgSn−1) at −0.3 V. Furthermore, the enhanced N2Hx intermediates was verified by in situ experiments, yielding consistent results with DFT calculation. This work opens a new avenue to regulate the activity and selectivity of N2 fixation.  相似文献   

19.
将超小Ru纳米团簇锚定于富含氧空位MoO3-x纳米带的双功能催化剂(Ru/MoO3-x)。该催化剂展现出优异的肼氧化(HzOR)和析氢反应(HER)催化性能,10 mA·cm-2时的过电势分别为-79和-27 mV,所组成的肼辅助电催化全解水(OWS)的电解池电压仅为13 mV,明显优于商业化20% Pt/C和已报道的一些催化剂。如此优异的性能主要归因于Ru纳米团簇有利于HzOR中N2H4的脱氢和HER氢中间体的吸/脱附平衡以及MoO3-x中的氧空位和Ru/MoO3-x异质结构导致的丰富的电化学活性位点和优化的电子转移动力学。  相似文献   

20.
Electrosynthesis of NH3 through the N2 reduction reaction (NRR) under ambient conditions is regarded as promising technology to replace the industrial energy- and capital-intensive Haber–Bosch process. Herein, a room-temperature spontaneous redox approach to fabricate a core–shell-structured Au@CeO2 composite, with Au nanoparticle sizes below about 10 nm and a loading amount of 3.6 wt %, is reported for the NRR. The results demonstrate that as-synthesized Au@CeO2 possesses a surface area of 40.7 m2 g−1 and a porous structure. As an electrocatalyst, it exhibits high NRR activity, with an NH3 yield rate of 28.2 μg h−1 cm−2 (10.6 μg h−1 mg−1cat., 293.8 μg h−1 mg−1Au) and a faradaic efficiency of 9.50 % at −0.4 V versus a reversible hydrogen electrode in 0.01 m H2SO4 electrolyte. The characterization results reveal the presence of rich oxygen vacancies in the CeO2 nanoparticle shell of Au@CeO2; these are favorable for N2 adsorption and activation for the NRR. This has been further verified by theoretical calculations. The abundant oxygen vacancies in the CeO2 nanoparticle shell, combined with the Au nanoparticle core of Au@CeO2, are electrocatalytically active sites for the NRR, and thus, synergistically enhance the conversion of N2 into NH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号