首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrocatalytic water splitting powered by renewable energy is a sustainable approach for hydrogen production. However, conventional water electrolysis may suffer from gas mixing, and the different kinetics between hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) will limit the direct use of unstable renewable energies, leading to increased cost of H2 production. Herein, a novel phenazine-based compound is synthesized to develop the solid-state redox mediator associated water splititng process, and thus decoupling the H2 and O2 production in acid solution without the use of membrane. Excitingly, this organic redox mediator exhibits high specific capacity (290 mAh g−1 at 0.5 A g−1), excellent rate performance (186 mAh g−1 at 30 A g−1) and long cycle life (3000 cycles) due to its π-conjugated aromatic structure and the fast kinetics of H+ storage/release process. Furthermore, a membrane-free decoupled water electrolysis architecture driven by solar energy is achieved, demonstrating high-purity H2 production at different times.  相似文献   

2.
The concept of non-diamond sp2 impurity states as charge transfer mediators on boron-doped diamond (BDD) surface was suggested as an explanation for the electrochemical behavior of synthetic diamond based electrodes. In order to verify this concept, graphite particles (sp2) were deposited on diamond electrodes (sp3) by mechanical abrasion. The behavior of the so prepared diamond–graphite composite electrodes were compared with those of as-grown (BDDag) and those after mild anodic polarization (BDDmild).Outer-sphere electron transfer processes such as ferri/ferrocyanide (Fe(CN)6III/II) and inner-sphere charge transfer reactions such as 1,4-benzoquinone/hydroquinone (Q/H2Q) were chosen in order to investigate the electrochemical properties of these composite electrodes. Both redox systems became more reversible as the graphite (sp2) loading increased. A strong analogy existed between as-grown diamond electrodes and diamond–graphite composite electrodes.Finally a model is proposed which describes the BDD electrode surface as a diamond matrix in which non-diamond (sp2) impurity states are dispersed. These non-diamond sp2 states on BDD surface acts as charge mediators for both inner-sphere and outer-sphere reactions.  相似文献   

3.
Heme peroxidase are ubiquitous enzymes catalyzing the oxidation of a broad range of substrates by hydrogen peroxide. In this paper the bioelectrochemical characterization of horseradish peroxidase (HRP) and soybean peroxidase (SBP), belonging to class III of the plant peroxidase superfamily, was studied. The homogeneous reactions between peroxidases and some common redox mediators in the presence of hydrogen peroxide have been carried out by cyclic voltammetry. The electrochemical characterization of the reactions involving enzyme, substrate and mediators concentrations allowed us to calculate the kinetic parameters for the substrate–enzyme reaction (KMS) and for the redox mediator–enzyme reaction (KMM). A full characterization of the direct electron transfer kinetic parameters between the electrode and enzyme active site was also performed by opportunely modeling data obtained from cyclic voltammetry and square wave voltammetry experiments. The experimental data obtained with immobilized peroxidases show enhanced direct electron transfer and excellent electrocatalytical performance for H2O2. Despite the structural similarities and common catalytic cycle, HRP and SBP exhibit differences in their substrate affinity and catalytic efficiency. Basing on our results, it can be concluded that peroxidase from soybean represents an interesting alternative to the classical and largely employed one obtained from horseradish as biorecognition element of electrochemical mediated biosensors.  相似文献   

4.
While the majority of reported paired electrochemical reactions involve carefully matched cathodic and anodic reactions, the precise matching of half reactions in an electrolysis cell is not generally necessary. During a constant current electrolysis almost any oxidation and reduction reaction can be paired, and in the presented work we capitalize on this observation by examining the coupling of anodic oxidation reactions with the production of hydrogen gas for use as a reagent in remote, Pd‐catalyzed hydrogenation and hydrogenolysis reactions. To this end, an alcohol oxidation, an oxidative condensation, intramolecular anodic olefin coupling reactions, an amide oxidation, and a mediated oxidation were all shown to be compatible with the generation and use of hydrogen gas at the cathode. This pairing of an electrolysis reaction with the production of a chemical reagent or substrate has the potential to greatly expand the use of more energy efficient paired electrochemical reactions.  相似文献   

5.
Although the electrochemical reduction of carbon dioxide (CO2) with a copper electrode produces hydrocarbons, the activity toward the conversion of CO2 is lost for several 10 min by the deposition of poisoning species on the electrode. To solve the poisoning species problem, the electrochemical reduction of CO2 was carried out using a copper electrode with a pulse electrolysis mode with anodic as well as cathodic polarization. The anodic polarization intervals suppressed the deposition of poisoning species on the electrode, and the amount of two hydrocarbons, CH4 and C2H4, barely decreased even after an hour. By choosing appropriate anodic potential and time duration, the selectivity for the C2H4 formation was greatly enhanced. The enhancement was found to be due to the copper oxide formed on the copper electrode. The selectivity was further improved when the electrochemical reduction was made with the copper-oxide electrode. The highest efficiency of about 28% is obtained at −3.15 V.  相似文献   

6.
Biologically active dicycloalkyl di- and trisulfides were prepared by the reactions of cycloalkanes C5—C7 with H2S and S8 under the anodic (cathodic) activation of hydrogen sulfide. In dichloromethane, the electrochemical activation of H2S in the presence of sulfur can generate sulfur-centered radical intermediates that react with cycloalkanes at room temperature. The current yield of di- and trisulfides depends on the method of redox activation of hydrogen sulfide, the concentration of sulfur, and the time of electrosynthesis. The anodic activation of hydrogen sulfide in the synthesis of dicycloalkyl di- and trisulfides in an excess S8 is more efficient than the cathodic activation. In the series of cycloalkanes C5—C7, the highest yield of sulfur-containing products is observed for cycloheptane.  相似文献   

7.
For electrocatalytic water splitting, the sluggish anodic oxygen evolution reaction (OER) restricts the cathodic hydrogen evolution reaction (HER). Therefore, developing an alternative anodic reaction with accelerating kinetics to produce value‐added chemicals, especially coupled with HER, is of great importance. Now, a thermodynamically more favorable primary amine (?CH2?NH2) electrooxidation catalyzed by NiSe nanorod arrays in water is reported to replace OER for enhancing HER. The increased H2 production can be obtained at cathode; meanwhile, a variety of aromatic and aliphatic primary amines are selectively electrooxidized to nitriles with good yields at the anode. Mechanistic investigations suggest that NiII/NiIII may serve as the redox active species for the primary amines transformation. Hydrophobic nitrile products can readily escape from aqueous electrolyte/electrode interface, avoiding the deactivation of the catalyst and thus contributing to continuous gram‐scale synthesis.  相似文献   

8.
Hydrogen production from water via electrolysis in acid is attracting extensive attention as an attractive alternative approach to replacing fossil fuels. However, the simultaneous evolution of H2 and O2 requires a fluorine‐containing proton exchange membrane to prevent the gases from mixing while using the same space to concentrate the gases, which significantly increases the cost and reduces the flexibility of this approach. Here, a battery electrode based on the highly reversible enolization reaction of pyrene‐4,5,9,10‐tetraone is first introduced as a solid‐state proton buffer to separate the O2 and H2 evolution of acidic water electrolysis in space and time, through which the gas mixing issue can be avoided without using any membrane. This process allows us to separately consider H2 and O2 production according to the variation in input power (e.g., the renewable energy) and/or the location for H2 concentration, thus showing high flexibility for H2 production.  相似文献   

9.
Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co‐production of H2 and O2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n‐type doping/de‐doping reaction of the solid‐state polytriphenylamine‐based battery electrode, we decouple the H2 and O2 production in acid water electrolysis. In this architecture, the H2 and O2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane‐free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting.  相似文献   

10.
《中国化学快报》2023,34(7):108034
Production of value-added chemicals and fuels from biomass via electrochemical methods has been of emerging interest in light of the increasing environmental, economic, and political challenges. Paired electrolysis, with anodic oxidation and cathodic reduction reactions pairing in a single electrochemical cell, offers an effective way to produce desired products in both electrodes, thus achieving complete electron economy. In this work, an efficient 5-hydroxymethylfurfural (HMF) paired electrolysis system is developed over a self-supported ultrathin Co3O4 nanoarray electrocatalyst for simultaneous production of value-added 2,5-dihydroxymethylfuran (DHMF) and 2,5-furandicarboxylic acid (FDCA). The as-designed paired electrolysis cell achieves a high HMF conversion and DHMF/FDCA selectivity at both anode and cathode without external hydrogen and oxygen input. A near-quantitative yield (95.7%) of FDCA and 78.8% yield of DHMF can be achieved in the paired electrolysis system, with a total Faradaic efficiency of 127%. This work will open up new opportunities in designing efficient electrochemical devices to simultaneously produce building-block chemicals from biomass-derived molecules in both anode and cathode.  相似文献   

11.
Microbial electrolysis cells (MECs) present an attractive route for energy-saving hydrogen (H2) production along with treatment of various wastewaters, which can convert organic matter into H2 with the assistance of microbial electrocatalysis. However, the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost. In this review, we will focus on the recent research progress of MEC for H2 production. First, we present a brief introduction of MEC technology and the operating mechanism for H2 production. Then, the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed. We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation. Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance.  相似文献   

12.
The electrochemical oxidation of the chromium(III) and indium(III) complexes with 3,6-di-tert-butyl-o-semiquinolate leading to the formation of active monocationic species is studied by cyclic voltammetry. The reactions of the latter with hydrogen sulfide generate the radical cation of H2S, whose fragmentation affords the proton and thiyl radical. These complexes are proposed for the first time as redox mediators for the one-pot thiolation of inert cycloalkanes C6–C8, which decreases the activation energy of hydrogen sulfide compared to that for direct electrochemical oxidation. The major products of cycloalkane functionalization involving H2S are thiols and organic di- and trisulfides. The yield of the synthesized compounds depends on the type of the mediator: the chromium(III) complex exhibits the highest efficiency in the electrocatalytic transformations.  相似文献   

13.
Anthraquinone (AQ) redox mediators are introduced to metal‐free organic dye sensitized photo‐electrochemical cells (DSPECs) for the generation of H2O2. Instead of directly reducing O2 to produce H2O2, visible‐light‐driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water‐soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm?2 and near‐quantitative faradaic efficiency for producing H2O2. In a non‐aqueous electrolyte, under 1 sun illumination, an organic‐soluble AQ is applied and the photocurrent reaches 1.8 mA cm?2 with faradaic efficiency up to 95 % for H2O2 production. This AQ‐relay DSPEC exhibits the highest photocurrent so far in non‐aqueous electrolytes for H2O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible‐light‐driven H2O2 production.  相似文献   

14.
Nanoporous Au (NPG) films have promising properties, making them suitable for various applications in (electro)catalysis or (bio)sensing. Tuning the structural properties, such as the pore size or the surface-to-volume ratio, often requires complex starting materials such as alloys, multiple synthesis steps, lengthy preparation procedures or a combination of these factors. Here we present an approach that circumvents these difficulties, enabling for a rapid and controlled preparation of NPG films starting from a bare Au electrode. In a first approach a Au oxide film is prepared by high voltage (HV) electrolysis in a KOH solution, which is then reduced either electrochemically or in the presence of H2O2. The resulting NPG structures and their electrochemically active surface areas strongly depend on the reduction procedure, the concentration and temperature of the H2O2-containing KOH solution, as well as the applied voltage and temperature during HV electrolysis. Secondly, the NPG film can be prepared directly by applying voltages that result in anodic contact glow discharge electrolysis (aCGDE). By carefully adjusting the corresponding parameters, the surface area of the final NPG film can be specifically controlled. The structural properties of the electrodes are investigated by means of XPS, SEM and electrochemical methods.  相似文献   

15.
A novel sensor was constructed based on the catalytic activity of ferrocene (Fc) that was immobilized on a room temperature ionic liquids (RTILs), 1-ethyl-3-methyl imidazolium tetrafluoroborate ([EMIM][BF4]), film. Electrochemical behavior of ferrocene was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of stable, well-defined and quasi-reversible redox peak of ferrocene could be obtained at pH 7.0 phosphate buffer. Further investigations reveal that both anodic and cathodic peak currents of ferrocene vary linearly with the concentration of hydrogen peroxide (H2O2). Based on this, a new sensor for the measurement of H2O2 can be fabricated facilely. This sensor allowed us to measure H2O2 by polarizing the electrode under ether anodic or cathodic potential with an excellent stability and anti-interfering ability.  相似文献   

16.
《中国化学快报》2023,34(2):107709
With the help of the redox mediator, decoupled water-splitting allows O2 and H2 to be produced at different times, at different rates, and even in different cells, which promotes both the operation safety and the utilization of renewable power sources. However, the current densities and stabilities of these redox mediators are commonly low, which require further improvements for practical applications. Here, we propose to use supercapacitors as solid state redox mediators for decoupled water splitting. For demonstration, Na0.5MnO2 (pseudocapacitor) and active carbon (double layer capacitor), are both used as the redox mediator. These supercapacitors show superior current density (1 A/cm2) and ultralong cycle-life (8000 cycles) compared with commonly investigated battery-based mediators (NiOOH/Ni(OH)2). Our research proves supercapacitors can be used as redox relay with high current density and stability, which may bring new insights in the design of decoupled water splitting systems.  相似文献   

17.
Applying a voltage to metal electrodes in contact with aqueous electrolytes results in the electrolysis of water at voltages above the decomposition voltage and plasma formation in the electrolyte at much higher voltages referred to as contact glow discharge electrolysis (CGDE). While several studies explore parameters that lead to changes in the IU characteristics in this voltage range, little is known about the evolution of the structural properties of the electrodes. Here we study this aspect on materials essential to electrocatalysis, namely Pt, Au, and Cu. The stationary IU characteristics are almost identical for all electrodes. Detailed structural characterization by optical microscopy, scanning electron microscopy, and electrochemical approaches reveal that Pt is stable during electrolysis and CGDE, while Au and Cu exhibit a voltage-dependent oxide formation. More importantly, oxides are reduced when the Au and Cu electrodes are kept in the electrolysis solution after electrolysis. We suspect that H2O2 (formed during electrolysis) is responsible for the oxide reduction. The reduced oxides (which are also accessible via electrochemical reduction) form a porous film, representing a possible new class of materials in energy storage and conversion studies.  相似文献   

18.
《化学:亚洲杂志》2018,13(16):2054-2059
The rational design and development of efficient and affordable enzyme‐free electrocatalysts for electrochemical detection are of great significance for the large‐scale applications of sensor materials, and have aroused increasing research interest. Herein, we report that a typical polyoxometalate (POM)‐based metal–organic framework (NENU5) that was hybridized with ketjenblack (KB) was a highly efficient electrochemical catalyst that could be used for the highly sensitive nonenzymatic detection of H2O2. The composite catalyst exhibited superb electrochemical detection performance towards H2O2, including a broad linear range from 10–50 mm , a low detection limit of 1.03 μm , and a high sensitivity of 33.77 μA mm −1, as well as excellent selectivity and stability. These excellent electrocatalytic properties should be attributed to the unique redox activity of the POM, the high specific surface area of the metal–organic framework (MOF), the strong conductivity of KB, and the synergistic effects of the multiple components in the composites during the electrolysis of H2O2. This work provides a new pathway for the exploration of nonenzymatic electrochemical sensors.  相似文献   

19.
Hydrogen peroxide (H2O2)is an important chemical with multiple uses across domestic and industrial settings. With a global need for wider adoption of green synthetic methods, there has been a growing interest in the electrochemical synthesis of H2O2 from oxygen reduction or water oxidation. State-of-the-art catalyst and reactor developments are beginning to advance to a stage where electrochemical synthesis is discussed as a viable alternative to current industrial methods. In this review, we highlight some of the most promising candidates for H2O2 electrosynthesis technologies and what further advancements are needed before the electrochemical route could challenge the ubiquitous anthraquinone process.  相似文献   

20.
We present strategies to tune the redox properties of polyoxometalate clusters to enhance the electron-coupled proton-buffer-mediated water splitting process, in which the evolution of hydrogen and oxygen can occur in different forms and is separated in time and space. By substituting the heteroatom template in the Keggin-type polyoxometalate cluster, H6ZnW12O40, it is possible to double the number of electrons and protonation in the redox reactions (from two to four). This increase can be achieved with better matching of the energy levels as indicated by the redox potentials, compared to the ones of well-studied H3PW12O40 and H4SiW12O40. This means that H6ZnW12O40 can act as a high-performance redox mediator in an electrolytic cell for the on-demand generation of hydrogen with a high decoupling efficiency of 95.5 % and an electrochemical energy efficiency of 83.3 %. Furthermore, the H6ZnW12O40 cluster also exhibits an excellent cycling behaviour and redox reversibility with almost 100 % H2-mediated capacity retention during 200 cycles and a high coulombic efficiency >92 % each cycle at 30 mA cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号