首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   

2.
Accidentally, it was found that triphenylamine (TPA) from commercial sources shows ultralong yellow-green room temperature phosphorescence (RTP) like commercial carbazole, which however disappears for lab-synthesized TPA with high purity. Herein, we for the first time identify the impurity types that cause RTP of commercial TPA, which are two N, N-diphenyl-naphthylamine isomers. Due to similar molecular polarity and very trace amount (≈0.8 ‰, molar ratio), these naphthyl substituted impurities can be easily overlooked. We further show that even at an extremely low amount (1000000 : 1, mass ratio) of impurities, RTP emission is still generated, attributed to the triplet-to-triplet energy transfer mechanism. Notably, this doping strategy is also applicable to the triphenylphosphine and benzophenone host systems, of which strong RTP emission can be activated by simply doping the corresponding naphthyl substituted analogues into them. This work therefore provides a general and efficient host/guest strategy toward high performance and diverse organic RTP materials.  相似文献   

3.
Achieving predictable and programmable two-dimensional (2D) structures with specific functions from exclusively organic soft materials remains a scientific challenge. This article unravels stereocomplex crystallization-driven self-assembly as a facile method for producing thermally robust discrete 2D-platelets of diamond shape from biodegradable semicrystalline polylactide (PLA) scaffolds. The method involves co-assembling two PLA stereoisomers, namely, PY-PDLA and NMI-PLLA , which form stereocomplex (SC)-crystals in isopropanol. By conjugating a well-known Förster resonance energy transfer (FRET) donor and acceptor dye, namely, pyrene ( PY ) and naphthalene monoimide ( NMI ), respectively, to the chain termini of these two interacting stereoisomers, a thermally robust FRET process can be stimulated from the 2D array of the co-assembled dyes on the thermally resilient SC-PLA crystal surfaces. Uniquely, by decorating the surface of the SC-PLA crystals with an externally immobilized guest dye, Rhodamine-B, similar diamond-shaped structures could be produced that exhibit pure white-light emission through a surface-induced two-step cascade energy transfer process. The FRET response in these systems displays remarkable dependence on the intrinsic crystalline packing, which could be modulated by the chirality of the co-assembling PLA chains. This is supported by comparing the properties of similar 2D platelets generated from two homochiral PLLAs ( PY-PLLA and NMI-PLLA ) labeled with the same FRET pair.  相似文献   

4.
Purely organic materials showing room temperature phosphorescence (RTP) and ultralong RTP (OURTP) have recently attracted much attention. However, it is challenging to integrate circularly polarized luminescence (CPL) into RTP/OURTP. Here, we show a strategy to realize CPL-active OURTP (CP-OURTP) by binding an achiral phosphor group directly to the chiral center of an ester chain. Engineering of this flexible chiral chain enables efficient chirality transfer to carbazole aggregates, resulting in strong CP-OURTP with a lifetime of over 0.6 s and dissymmetry factor of 2.3×10−3 after the conformation regulation upon photo-activation. The realized CP-OURTP is thus stable at room temperature but can be deactivated quickly at 50 °C to CP-RTP with high CPL stability during the photo-activation/thermal-deactivation cycles. Based on this extraordinary photo/thermal-responsive and highly reversible CP-OURTP/RTP, a CPL-featured lifetime-encrypted combinational logic device has been successfully established.  相似文献   

5.
Organic room temperature phosphorescence (RTP) materials have drawn increasing attention due to their unique features, especially the long emission lifetime for applications in biomedicine. In this review, we provide an overview of the recent developments of organic RTP materials applied in the biomedicine field. First, we introduce the basic mechanism of phosphorescence and subsequently we present various strategies of modulating the lifetime and efficiency of room temperature organic phosphorescence. Next, we summarize the progress of organic RTP materials in biological applications, including bioimaging, anti‐cancer and antibacterial therapies. Finally, we provide an outlook with regard to the challenges and future perspectives in the field.  相似文献   

6.
利用4-溴联苯内含重原子的特性,通过外加有机溶剂对4-溴联苯的增溶作用和γ-CD腔的保护性作用,在不除氧条件下首次获得有分析意义的透明CD-RTP体系,该体系对4-溴联苯的检测限为3.0×10-7mol/L。  相似文献   

7.
We report a series of highly emissive azatriangulenetrione (TANGO) solids in which the luminescent properties are controlled by engineering the molecular packing by adjusting the steric size of substituents. The co‐alignment of “phosphorogenic” carbonyl groups within the π‐stacks results in an almost pure triplet emission in HTANGO, TCTANGO, TBTANGO and TITANGO, while their rotation by ≈60° in the sterically hindered tBuTANGO leads to an almost pure singlet emission. Despite strong π‐interactions, aggregation‐induced quenching and triplet–triplet annihilation are avoided in HTANGO and TCTANGO which display efficient phosphorescence in the solid state. To our knowledge, HTANGO with the solid‐state phosphorescence quantum yield of 42 % at room temperature is the most efficient phosphor composed of the 1st/2nd raw elements only.  相似文献   

8.
无保护流体室温燐光法测定色氨酸的研究   总被引:1,自引:0,他引:1  
建立了一种仅用KI为重原子微扰剂、Na2SO3为除氧剂的无保护流体室温燐光测定色氨酸的方法,详细研究了测定条件及有机溶剂的影响。本法的线性范围为1.2×10-7~1.0×10-5mol/L,检出限为1.1×10-8mol/L,相对标准偏差2.47%~3.24%。已用于大米、花生、大豆及竹笋中色氨酸的测定,与荧光法比较,分析结果相符。  相似文献   

9.
Purely organic materials showing room temperature phosphorescence (RTP) and ultralong RTP (OURTP) have recently attracted much attention. However, it is challenging to integrate circularly polarized luminescence (CPL) into RTP/OURTP. Here, we show a strategy to realize CPL‐active OURTP (CP‐OURTP) by binding an achiral phosphor group directly to the chiral center of an ester chain. Engineering of this flexible chiral chain enables efficient chirality transfer to carbazole aggregates, resulting in strong CP‐OURTP with a lifetime of over 0.6 s and dissymmetry factor of 2.3×10?3 after the conformation regulation upon photo‐activation. The realized CP‐OURTP is thus stable at room temperature but can be deactivated quickly at 50 °C to CP‐RTP with high CPL stability during the photo‐activation/thermal‐deactivation cycles. Based on this extraordinary photo/thermal‐responsive and highly reversible CP‐OURTP/RTP, a CPL‐featured lifetime‐encrypted combinational logic device has been successfully established.  相似文献   

10.
Although long-lived triplet charge-transfer (3CT) state with high energy level has gained significant attention, the development of organic small molecules capable of achieving such states remains a major challenge. Herein, by using the through-space electronic coupling effect, we have developed a compound, namely NIC-DMAC, which has a long-lived 3CT state at the single-molecule level with a lifetime of 210 ms and a high energy level of up to 2.50 eV. Through a combination of experimental and computational approaches, we have elucidated the photophysical processes of NIC-DMAC, which involve sequential transitions from the first singlet excited state (S1) that shows a 1CT character to the first triplet excited state (T1) that exhibits a local excited state feature (3LE), and then to the second triplet excited state (T2) that shows a 3CT character (i.e., S1 (1CT)→T1 (3LE)→T2 (3CT)). The long lifetime and high energy level of its 3CT state have enabled NIC-DMAC as an initiator for photocuring in double patterning applications.  相似文献   

11.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

12.
Dynamic room temperature phosphorescence (RTP) materials have potential applications in optoelectronics, which inevitably suffer from poor processability, flexibility or stretchability. Herein, we report a concise strategy to develop supercooled liquids (SCLs) with dynamic RTP behavior using terminal hydroxyl engineering. The terminal hydroxyls effectively hinder the nucleation process of molecules for the formation of stable SCLs after thermal annealing. Impressively, the SCLs show reversible RTP emission via alternant stimulation by UV light and heat. Photoactivated SCLs have phosphorescent efficiency of 8.50 % and a lifetime of 31.54 ms under ambient conditions. Regarding the dynamic RTP behavior and stretchability of SCLs, we demonstrate the applications in erasable data encryption and patterns on flexible substrates. This finding provides a design principle for obtaining SCLs with RTP and expands the potential applications of RTP materials in flexible optoelectronics.  相似文献   

13.
许梅  栗东霞  闫桂琴 《分析测试学报》2016,35(10):1301-1305
以三巯基丙酸(MPA)为表面修饰剂,采用水相合成法制备了稳定且具有良好光学性质的Mn掺杂Zn S量子点。在p H 7.4的磷酸缓冲液中,盐酸异丙嗪的加入使MPA包裹的Mn掺杂Zn S量子点的室温磷光发生明显猝灭,据此建立了一种检测盐酸异丙嗪的新方法。磷光猝灭强度(ΔRTP)与盐酸异丙嗪浓度呈良好线性,其线性范围为3.2~32μmol/L与32~160μmol/L,相关系数分别为0.998与0.999,检出限为0.553μmol/L。将该方法用于人血清与尿液中盐酸异丙嗪的检测,加标回收率为96.4%~103.1%,结果满意。  相似文献   

14.
Persistent room‐temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red‐emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br−H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water‐dispersity for biomedical applications.  相似文献   

15.
Although persistent room‐temperature phosphorescence (RTP) emission has been observed for a few pure crystalline organic molecules, there is no consistent mechanism and no universal design strategy for organic persistent RTP (pRTP) materials. A new mechanism for pRTP is presented, based on combining the advantages of different excited‐state configurations in coupled intermolecular units, which may be applicable to a wide range of organic molecules. By following this mechanism, we have developed a successful design strategy to obtain bright pRTP by utilizing a heavy halogen atom to further increase the intersystem crossing rate of the coupled units. RTP with a remarkably long lifetime of 0.28 s and a very high quantum efficiency of 5 % was thus obtained under ambient conditions. This strategy represents an important step in the understanding of organic pRTP emission.  相似文献   

16.
The dehydrating cyclotrimerization of 1‐tetralone in the presence of titanium tetrachloride at high temperatures leads to homotruxene, a nonplanar arene in which the twist angles between its three outer benzene rings and the central benzene are stabilized by ethylene bridges. This non‐planar configuration allows for pronounced spin–orbit coupling and a high triplet energy, leading to room‐temperature phosphorescence in air with a lifetime of 0.38 s and a quantum yield of 5.6 %, clearly visible to the human eye after switching off the excitation. Triplet–triplet annihilation is found to simultaneously lead to a substantial delayed fluorescence, unprecedented from a pure hydrocarbon at ambient conditions, with a lifetime of 0.11 s.  相似文献   

17.
The synthesis of two new phosphane-gold(I)–napthalimide complexes has been performed and characterized. The compounds present luminescent properties with denoted room temperature phosphorescence (RTP) induced by the proximity of the gold(I) heavy atom that favors intersystem crossing and triplet state population. The emissive properties of the compounds together with the planarity of their chromophore were used to investigate their potential as hosts in the molecular recognition of different polycyclic aromatic hydrocarbons (PAHs). Naphthalene, anthracene, phenanthrene, and pyrene were chosen to evaluate how the size and electronic properties can affect the host:guest interactions. Stronger affinity has been detected through emission titrations for the PAHs with extended aromaticity (anthracene and pyrene) and the results have been supported by DFT calculation studies.  相似文献   

18.
银纳米粒子的绿色合成及其对荧光素室温磷光的增强效应   总被引:1,自引:0,他引:1  
以β-环糊精(β-CD)作为稳定剂, 葡萄糖为还原剂, 银氨溶液为前驱体, 实现了绿色化学方法合成银纳米粒子. 利用紫外-可见分光光度法(UV-Vis)、高分辨透射电镜(HRTEM)、红外光谱法(FTIR)对产物进行了表征. 将银纳米粒子引入滤纸表面增强室温磷光(RTP)的研究, 发现银纳米粒子对醋酸铅诱导荧光素(FL)所得的RTP具有明显的增强效应, 并且随着银纳米粒子加入量的增加具有先增强后猝灭的趋势. 对β-CD与银纳米粒子的相互作用机理及银纳米粒子对FL RTP增强效应的作用机理进行了初步讨论.  相似文献   

19.
《Analytical letters》2012,45(2):307-322
ABSTRACT

The effects of three experimental factors (pH, precursors, alcohol) on the sensing characteristics of these materials were screened by means of two-level factorial designs. The resulting materials turned out to be useful as luminescent probes for the measurement of dissolved and gaseous oxygen. The photochemical properties and the analytical performance of the RTP sensing phases have been studied by using both gas flow-injection analysis and continuous liquid flow-through systems. The proposed sensing materials were particularly suitable for measuring dissolved oxygen in natural waters. The detection limit attained was 0.004 mg.ml?1 and a typical precision of ± 1.0% al a 0.6 mg.ml?1 oxygen level was achieved. Response time for 90% of the final RTP value was less than 90s in a continuous flow mode. No hysteresis effects were noticed.  相似文献   

20.
Corannulene-derived materials have been extensively explored in energy storage and solar cells, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1H) and a lower-lying T1 (T1L) can be observed, while for TPXZPhCor, T1H-dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1H states of TPXZPhCor, the first corannulene-based solution-processed afterglow OLEDs is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax) and a luminance (Lmax) of 3.3 % and 5167 cd m−2, respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号