首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence suggests that simple peptides can access diverse amphiphilic phases, and that these structures underlie the robust and widely distributed assemblies implicated in nearly 40 protein misfolding diseases. Here we exploit a minimal nucleating core of the Aβ peptide of Alzheimer's disease to map its morphologically accessible phases that include stable intermolecular molten particles, fibers, twisted and helical ribbons, and nanotubes. Analyses with both fluorescence lifetime imaging microscopy (FLIM) and transmission electron microscopy provide evidence for liquid-liquid phase separations, similar to the coexisting dilute and dense protein-rich liquid phases so critical for the liquid-solid transition in protein crystallization. We show that the observed particles are critical for transitions to the more ordered cross-β peptide phases, which are prevalent in all amyloid assemblies, and identify specific conditions that arrest assembly at the phase boundaries. We have identified a size dependence of the particles in order to transition to the para-crystalline phase and a width of the cross-β assemblies that defines the transition between twisted fibers and helically coiled ribbons. These experimental results reveal an interconnected network of increasing molecularly ordered cross-β transitions, greatly extending the initial computational models for cross-β assemblies.  相似文献   

2.
Several salt bridges observed in protein X-ray crystallographic structures showed a consistent pattern of a carboxylate, situated near the face of an aromatic ring, forming a bond to an arginine residue of a ligand. To determine the driving force for these complexes, (1)H NMR or potentiometric binding titrations were performed on solutions containing N-acetyl arginine methyl ester, N-acetyl lysine methyl ester, guanidinium chloride, or KCl and one member of a series of diacidic templates, which had aromatic or aliphatic groups placed below their carboxylates. Only templates having an aromatic ring were able to form a salt bridge in water. Although most of the obvious interactions, such as ionic and cation-pi, and ion desolvation are important factors, association of an amino acid in water required the presence of the entire amino acid. This result suggests that the interaction between the aliphatic portion of an amino acid and an aromatic ring of a template is an important component of complexation. Aromatic templates also transported N-acetyl arginine methyl ester from water to 1-octanol. The results of the transport studies are discussed in terms of potential intermediate states that could lower some of the activation barriers of protein folding.  相似文献   

3.
Magic‐angle spinning solid‐state NMR spectroscopy has been applied to study the dynamics of CBM3b–Cbh9A from Clostridium thermocellum (ctCBM3b), a cellulose binding module protein. This 146‐residue protein has a nine‐stranded β‐sandwich fold, in which 35 % of the residues are in the β‐sheet and the remainder are composed of loops and turns. Dynamically averaged 1H‐13C dipolar coupling order parameters were extracted in a site‐specific manner by using a pseudo‐three‐dimensional constant‐time recoupled separated‐local‐field experiment (dipolar‐chemical shift correlation experiment; DIPSHIFT). The backbone‐Cα and Cβ order parameters indicate that the majority of the protein, including turns, is rigid despite having a high content of loops; this suggests that restricted motions of the turns stabilize the loops and create a rigid structure. Water molecules, located in the crystalline interface between protein units, induce an increased dynamics of the interface residues thereby lubricating crystal water‐mediated contacts, whereas other crystal contacts remain rigid.  相似文献   

4.
Molecular motions of free and pheromone-bound mouse major urinary protein I, previously investigated by NMR relaxation, were simulated in 30 ns molecular dynamics (MD) runs. The backbone flexibility was described in terms of order parameters and correlation times, commonly used in the NMR relaxation analysis. Special attention was paid to the effect of conformational changes on the nanosecond time scale. Time-dependent order parameters were determined in order to separate motions occurring on different time scales. As an alternative approach, slow conformational changes were identified from the backbone torsion angle variances, and "conformationally filtered" order parameters were calculated for well-defined conformation states. A comparison of the data obtained for the free and pheromone-bound protein showed that some residues are more rigid in the bound form, but a larger portion of the protein becomes more flexible upon the pheromone binding. This finding is in general agreement with the NMR results. The higher flexibility observed on the fast (fs-ps) time scale was typically observed for the residues exhibiting higher conformational freedom on the ns time scale. An inspection of the hydrogen bond network provided a structural explanation for the flexibility differences between the free and pheromone-bound proteins in the simulations.  相似文献   

5.
Hydrophobic collapse plays crucial roles in protein functions, from accessing the complex three-dimensional structures of native enzymes to the dynamic polymerization of non-equilibrium microtubules. However, hydrophobic collapse can also lead to the thermodynamically downhill aggregation of aberrant proteins, which has interestingly led to the development of a unique class of soft nanomaterials. There remain critical gaps in the understanding of the mechanisms of how hydrophobic collapse can regulate such aggregation. Demonstrated herein is a methodology for non-equilibrium amyloid polymerization through mutations of the core sequence of Aβ peptides by a thermodynamically activated moiety. An out of equilibrium state is realized because of the negative feedback from the transiently formed cross-β amyloid networks. Such non-equilibrium amyloid nanostructures were utilized to access temporal control over its electronic properties.  相似文献   

6.
RNA recognition by proteins is often accompanied by significant changes in RNA dynamics in addition to conformational changes. However, there are very few studies which characterize the changes in molecular motions in RNA on protein binding. We present a quantitative (13)C NMR relaxation study of the changes in RNA dynamics in the pico-nanosecond time scale and micro-millisecond time scale resulting from interaction of the stem-loop SRE-RNA with the VTS1p-SAM domain. (13)C relaxation rates of the protonated carbons of the nucleotide base and anomeric carbons have been analyzed by employing the model-free formalism, for a fully (13)C/(15)N-labeled sample of the SRE-RNA in the free and protein-bound forms. In the free RNA, the nature of molecular motions are found to be distinctly different in the stem and the loop region. On binding to the protein, the nature of motions becomes more homogeneous throughout the RNA, with many residues showing increased flexibility at the aromatic carbon sites, while the anomeric carbon sites become more rigid. Surprisingly, we also observe indications of a slow collective motion of the RNA in the binding pocket of the protein. The observation of increased motions on binding is interesting in the context of growing evidence that binding does not always lead to motional restrictions and the resulting entropy gain could favor the free energy of association.  相似文献   

7.
Aromatic amino acid side chains have a rich role within proteins and are often central to their structure and function. Suitable isotopic‐labelling strategies enable studies of sub‐nanosecond aromatic‐ring dynamics using solution NMR relaxation methods. Surprisingly, it was found that the three aromatic side chains in human ubiquitin show a sharp thermal dynamical transition at approximately 312 K. Hydrostatic pressure has little effect on the low‐temperature behavior, but somewhat decreases the amplitude of motion in the high‐temperature regime. Therefore, below the transition temperature, ring motion is largely librational. Above this temperature, a complete ring‐rotation process that is fully consistent with a continuous diffusion not requiring the transient creation of a large activated free volume occurs. Molecular dynamics simulations qualitatively corroborate this view and reinforce the notion that the dynamical character of the protein interior has much more liquid‐alkane‐like properties than previously appreciated.  相似文献   

8.
Amyloidoses are diseases characterized by abnormal protein folding and self-assembly, for which no cure is available. Inhibition or modulation of abnormal protein self-assembly, therefore, is an attractive strategy for prevention and treatment of amyloidoses. We examined Lys-specific molecular tweezers and discovered a lead compound termed CLR01, which is capable of inhibiting the aggregation and toxicity of multiple amyloidogenic proteins by binding to Lys residues and disrupting hydrophobic and electrostatic interactions important for nucleation, oligomerization, and fibril elongation. Importantly, CLR01 shows no toxicity at concentrations substantially higher than those needed for inhibition. We used amyloid β-protein (Aβ) to further explore the binding site(s) of CLR01 and the impact of its binding on the assembly process. Mass spectrometry and solution-state NMR demonstrated binding of CLR01 to the Lys residues in Aβ at the earliest stages of assembly. The resulting complexes were indistinguishable in size and morphology from Aβ oligomers but were nontoxic and were not recognized by the oligomer-specific antibody A11. Thus, CLR01 binds already at the monomer stage and modulates the assembly reaction into formation of nontoxic structures. The data suggest that molecular tweezers are unique, process-specific inhibitors of aberrant protein aggregation and toxicity, which hold promise for developing disease-modifying therapy for amyloidoses.  相似文献   

9.
Amyloid fibrils, which cause a number of degenerative diseases, are insoluble under physiological conditions and are supported by native contacts. Recently, the effects of the aromatic residues on the Aβ amyloid protofibril were investigated in a ThT fluorescence study. However, the relationship between the material characteristics of the Aβ protofibril and its aromatic residues has not yet been investigated on the atomic scale. Here, we successfully constructed wild‐type (WT) and mutated types of Aβ protofibrils by using molecular dynamics simulations. Through principle component analysis, we established the structural stability and vibrational characteristics of F20L Aβ protofibrils and compared them with WT and other mutated models such as F19L and F19LF20L. In addition, structural stability was assessed by calculating the elastic modulus, which showed that the F20L model has higher values than the other models studied. From our results, it is shown that aromatic residues influence the structural and material characteristics of Aβ protofibrils.  相似文献   

10.
Sup35p is a prion protein found in yeast that contains a prion-forming domain characterized by a repetitive sequence rich in Gln, Asn, Tyr, and Gly amino acid residues. The peptide GNNQQNY7-13 is one of the shortest segments of this domain found to form amyloid fibrils, in a fashion similar to the protein itself. Upon dissolution in water, GNNQQNY displays a concentration-dependent polymorphism, forming monoclinic and orthorhombic crystals at low concentrations and amyloid fibrils at higher concentrations. We prepared nanocrystals of both space groups as well as fibril samples that reproducibly contain three (coexisting) structural forms and examined the specimens with magic angle spinning (MAS) solid-state nuclear magnetic resonance. 13C and 15N MAS spectra of both nanocrystals and fibrils reveal narrow resonances indicative of a high level of microscopic sample homogeneity that permitted resonance assignments of all five species. We observed variations in chemical shift among the three dominant forms of the fibrils which were indicated by the presence of three distinct, self-consistent sets of correlated NMR signals. Similarly, the monoclinic and orthorhombic crystals exhibit chemical shifts that differ from one another and from the fibrils. Collectively, the chemical shift data suggest that the peptide assumes five conformations in the crystals and fibrils that differ from one another in subtle but distinct ways. This includes variations in the mobility of the aromatic Tyr ring. The data also suggest that various structures assumed by the peptide may be correlated to the "steric zipper" observed in the monoclinic crystals.  相似文献   

11.
Aromatic residues are key widespread elements of protein structures and have been shown to be important for structure stability, folding, protein-protein recognition, and ligand binding. The interactions of pairs of aromatic residues (aromatic dimers) have been extensively studied in protein structures. Isolated aromatic molecules tend to form higher order clusters, like trimers, tetramers, and pentamers, that adopt particular well-defined structures. Taking this into account, we have surveyed protein structures deposited in the Protein Data Bank in order to find clusters of aromatic residues in proteins larger than dimers and characterized them. Our results show that larger clusters are found in one of every two unique proteins crystallized so far, that the clusters are built adopting the same trimer motifs found for benzene clusters in vacuum, and that they are clearly nonlocal brining primary structure distant sites together. We extensively analyze the trimers and tetramers conformations and found two main cluster types: a symmetric cluster and an extended ladder. Finally, using calmodulin as a test case, we show aromatic clsuters possible role in folding and protein-protein interactions. All together, our study highlights the relevance of aromatic clusters beyond the dimer in protein function, stability, and ligand recognition.  相似文献   

12.
In this investigation, semiempirical NMR chemical shift prediction methods are used to evaluate the dynamically averaged values of backbone chemical shifts obtained from unbiased molecular dynamics (MD) simulations of proteins. MD-averaged chemical shift predictions generally improve agreement with experimental values when compared to predictions made from static X-ray structures. Improved chemical shift predictions result from population-weighted sampling of multiple conformational states and from sampling smaller fluctuations within conformational basins. Improved chemical shift predictions also result from discrete changes to conformations observed in X-ray structures, which may result from crystal contacts, and are not always reflective of conformational dynamics in solution. Chemical shifts are sensitive reporters of fluctuations in backbone and side chain torsional angles, and averaged (1)H chemical shifts are particularly sensitive reporters of fluctuations in aromatic ring positions and geometries of hydrogen bonds. In addition, poor predictions of MD-averaged chemical shifts can identify spurious conformations and motions observed in MD simulations that may result from force field deficiencies or insufficient sampling and can also suggest subsets of conformational space that are more consistent with experimental data. These results suggest that the analysis of dynamically averaged NMR chemical shifts from MD simulations can serve as a powerful approach for characterizing protein motions in atomistic detail.  相似文献   

13.
Aromatic stacking of 9,9'-(alpha,omega-alkanediyl)bis[adenine] (1), 1,1'-(alpha,omega-alkanediyl)bis[benzimidazole] (2), and 9-[omega-(benzimidazol-1-yl)alkyl]adenine (3) were studied at low concentrations of these compounds by means of UV and NMR spectroscopies. The UV hypochromic effect at T degrees C was determined as the ratio of the integration strength B at T degrees C (T = 27, 40, and 50) to that at 60 degrees C. The UV hypochromic effects of 1 and 3 were remarkable in water, suggesting a formation of intramolecular aromatic stacking, while the UV data of 2 did not present unambiguous evidence supporting aromatic stacking. A difference of chemical shift of each aromatic ring proton between 27 and 80 degrees C, that is Deltadelta = delta(80 degrees C) - delta(27 degrees C), was given as an indication of the aromatic stacking in the NMR study. On the basis the data of Deltadelta, 1 and 3 were stabilized by a stacking interaction in the buffer solution at pD 7.0 but not in the organic solvents. On the other hand, the NMR data did not indicate the formation of aromatic stacking of 2 either in the organic solvents or in the aqueous solution. The thermodynamic parameters of the intramolecular aromatic stacking of 3 were determined by means of NMR spectroscopy.  相似文献   

14.
Aromatic aminocatalysis refers to transformations that employ aromatic amines, such as anilines or aminopyridines, as catalysts. Owing to the conjugation of the amine moiety with the aromatic ring, aromatic amines demonstrate distinctive features in aminocatalysis compared with their aliphatic counterparts. For example, aromatic aminocatalysis typically proceeds with slower turnover, but is more active and conformationally rigid as a result of the stabilized aromatic imine or iminium species. In fact, the advent of aromatic aminocatalysis can be traced back to before the renaissance of organocatalysis in the early 2000s. So far, aromatic aminocatalysis has been widely applied in bioconjugation reactions through transamination; in asymmetric organocatalysis through imine/enamine tautomerization; and in cooperative catalysis with transition metals through C?H/C?C activation and functionalization. This Focus Review summarizes the advent of and major advances in the use of aromatic aminocatalysis in bioconjugation reactions and organic synthesis.  相似文献   

15.
Avian Pancreatic Polypeptide is a 36 residue protein that exhibits a tertiary fold. Results of previous experimental and computational studies indicate that the structure of aPP is stabilized more by non-bonded interactions than by the hydrophobic effect. Aromatic residues are known to participate in a variety of long range non-bonded interactions, with both backbone atoms and the atoms of other side-chains, which could be responsible, in part, for the stability of both the local secondary structure and the tertiary fold. The effect of these aromatic interactions on the stability of aPP was calculated using BHandHLYP/cc-pVTZ. Aromatic residues were shown to participate in multiple hydrogen bonded and weakly polar interactions in the secondary structure. The energies of the weakly polar interactions are comparable with those of hydrogen bonds. Aromatic residues were also shown to participate in multiple weakly polar interactions across the tertiary fold, again with energies similar to those of hydrogen bonds.  相似文献   

16.
Aromatic residues are frequently found in helical and beta-barrel integral membrane proteins enriched at the membrane-water interface. Although the importance of these residues in membrane protein folding has been rationalized by thermodynamic partition measurements using peptide model systems, their contribution to the stability of bona fide membrane proteins has never been demonstrated. Here, we have investigated the contribution of interfacial aromatic residues to the thermodynamic stability of the beta-barrel outer membrane protein OmpA from Escherichia coli in lipid bilayers by performing extensive mutagenesis and equilibrium folding experiments. Isolated interfacial tryptophanes contribute -2.0 kcal/mol, isolated interfacial tyrosines contribute -2.6 kcal/mol, and isolated interfacial phenylalanines contribute -1.0 kcal/mol to the stability of this protein. These values agree well with the prediction from the Wimley-White interfacial hydrophobicity scale, except for tyrosine residues, which contribute more than has been expected from the peptide models. Double mutant cycle analysis reveals that interactions between aromatic side chains become significant when their centroids are separated by less than 6 A but are nearly insignificant above 7 A. Aromatic-aromatic side chain interactions are on the order of -1.0 to -1.4 kcal/mol and do not appear to depend on the type of aromatic residue. These results suggest that the clustering of aromatic side chains at membrane interfaces provides an additional heretofore not yet recognized driving force for the folding and stability of integral membrane proteins.  相似文献   

17.
The role of the array of aromatic amino acid side chains located close to the chromophore binding loop of photoactive yellow protein (PYP) was studied using the alanine-substitution mutagenesis. Phe92, Tyr94, Phe96 and Tyr98 were replaced with alanine (F92A, Y94A, F96A and Y98A, respectively), then these mutants were characterized by UV-visible absorption spectra, circular dichroism (CD) spectra, thermal stability and photocycle kinetics. Absorption maxima of F92A, Y94A, F96A and Y98A were 444, 442, 439 and 447 nm, respectively, different to wild type (WT) at 446 nm. Far-UV CD spectra of mutants other than F92A were different from WT, indicating that Tyr94, Phe96 and Tyr98 maintain the native secondary structure of PYP. Mid-point temperatures of thermal denaturation of F92A, Y94A and F96A, estimated by the CD signal at 222 nm, were 5-10 degrees C lower than WT. Time constants of the photocycle estimated by flash-induced absorbance change were 0.36 s for WT and 1.4 s for Y98A, however, 100, 30 and 3000 times slower than WT for F92A, Y94A and F96A, respectively. Tyr98 is located in the loop region, whereas Phe92, Tyr94 and Phe96 are incorporated in the beta4 strand, showing that aromatic amino acid residues in the beta-sheet regulate the absorption spectrum, thermal stability and photocycle of PYP. Aromatic rings of Phe92, Tyr94 and Phe96 lie nearly perpendicular to the aromatic ring of Phe75 or chromophore. Possible weak hydrogen bonds between the aromatic ring hydrogen and pi-electrons of these residues are discussed.  相似文献   

18.
Designed octapeptide beta-hairpins containing a central (D)Pro-Gly segment have been used as a scaffold to place the aromatic residues Tyr and Trp at various positions on the antiparallel beta-strands. Using a set of five peptide hairpins, aromatic interactions have been probed across antiparallel beta-sheets, in the non-hydrogen bonding position (Ac-L-Y-V-(D)P-G-L-Y/W-V-OMe: peptides 1 and 2), diagonally across the strands (Boc-Y/W-L-V-(D)P-G-W-L-V-OMe: peptides 3 and 6), and along the strands at positions i and i + 2 (Boc-L-L-V-(D)P-G-Y-L-W-OMe: peptide 4). Two peptides served as controls (Boc-L-L-V-(D)P-G-Y-W-V-OMe: peptide 5; Boc-L-Y-V-(D)P-G-L-L-V-OMe: peptide 7) for aromatic interactions. All studies have been carried out using solution NMR methods in CDCl(3) + 10% DMSO-d(6) and have been additionally examined in CD(3)OH for peptides 1 and 2. Inter-ring proton-proton nuclear Overhauser effects (NOEs) and upfield shifted aromatic proton resonances have provided firm evidence for specific aromatic interactions. Calculated NMR structures for peptides 1 and 2, containing aromatic pairs at facing non-hydrogen bonded positions, revealed that T-shaped arrangements of the interacting pairs of rings are favored, with ring current effects leading to extremely upfield chemical shifts and temperature dependences for specific aromatic protons. Anomalous far-UV CD spectra appeared to be a characteristic feature in peptides where the two aromatic residues are spatially proximal. The observation of the close approach of aromatic rings in organic solvents suggests that interactions of an electrostatic nature may be favored. This situation may be compared to the case of aqueous solutions, where clustering of aromatic residues is driven by solvophobic (hydrophobic) forces.  相似文献   

19.
The bimolecular electron transfer from secondary aromatic amines to parent radical cations of nonpolar solvents such as alkanes and alkyl chlorides results in the synchronous formation of amine radical cations as well as aminyl radicals, in comparable amounts. If as for cyclic aromatic amines (c-Ar(2)NH) the intramolecular bending motion around the amine group is restricted in varying degrees (acridane, phenothiazine) or completely prevented (carbazole), then this picture is modified. In the free electron transfer, the completely rigid carbazole yields exclusively amine radical cations. Acridane exhibits preferred radical cations, but phenothiazine with the more flexible six-membered ring involving sulfur as a further heteroatom follows the common two-product rule; see above. The phenomenon is reasoned by a peculiarity in the bimolecular free electron transfer where after diffusional approach the actual electron jump proceeds in the ultrashort time range. Therefore, it reflects femtosecond molecular motions which, in the case of free mobility, continuously pass through different molecule conformers, combined with fluctuation of the electrons of the responsible molecular n-orbitals. The rigid systems, however, do not show this effect because of a nonexistent bending motion.  相似文献   

20.
A large number of macrocycles containing alternating repeats of cystine diOMe(-NH-CH(CO(2)Me)-CH(2)-S-)(2) and either a conformationally rigid aromatic/alicyclic moiety or a flexible polymethylene unit (X) in the cyclic backbone with ring size varying from 13- to 78-membered have been examined by spectral ((1)H NMR, FT-IR, CD) and X-ray crystallography studies for unusual conformational preferences. While (1)H NMR measurements indicated a turnlike conformation for all macrocycles, stabilized by intramolecular NH.CO hydrogen bonding, as also supported by FT-IR spectra in chloroform, convincing proof for beta-turn structures was provided by circular dichroism studies. Single-crystal X-ray studies on 39-membered cyclo (Adm-L-Cyst)(3) revealed a double-helical fold (figure-eight motif) for the macrocycle. Only a right-handed double helix was seen in the macrocycle constructed from L-cystine. The mirror-image macrocycle made up of D-cystine units exhibited a double helix with exactly the opposite screw sense, as expected. The enantiomeric figure-eights were stabilized by two intramolecular NH. CO hydrogen bonds and exhibited identical (1) H NMR and FT-IR spectra. The CD spectra of both isomers had a mirror-image relationship. The present results have clearly brought out the importance of cystine residues in inducing turn conformation that may be an important deciding factor for the adoption of topologically important structures by macrocycles containing multiple S-S linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号