首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overall water splitting (OWS) using semiconductor photocatalysts is a promising method for solar fuel production. Achieving a high quantum efficiency is one of the most important prerequisites for photocatalysts to realize high solar-to-fuel efficiency. In a recent study (Nature 2020 , 58, 411–414), a quantum efficiency of almost 100 % has been achieved in an aluminum-doped strontium titanate (SrTiO3 : Al) photocatalyst. Herein, using the SrTiO3 : Al as a model photocatalyst, we reveal the criteria for efficient photocatalytic water splitting by investigating the carrier dynamics through a comprehensive photoluminescence study. It is found that the Al doping suppresses the generation of Ti3+ recombination centers in SrTiO3, the surface band bending facilitates charge separation, and the in situ photo-deposited Rh/Cr2O3 and CoOOH co-catalysts render efficient charge extraction. By suppressing photocarrier recombination and establishing a facile charge separation and extraction mechanism, high quantum efficiency can be achieved even on photocatalysts with a very short (sub-ns) intrinsic photocarrier lifetime, challenging the belief that a long carrier lifetime is a fundamental requirement. Our findings could provide guidance on the design of OWS photocatalysts toward more efficient solar-to-fuel conversion.  相似文献   

2.
Solar water oxidation is a critical step in artificial photosynthesis. Successful completion of the process requires four holes and releases four protons. It depends on the consecutive accumulation of charges at the active site. While recent research has shown an obvious dependence of the reaction kinetics on the hole concentrations on the surface of heterogeneous (photo)electrodes, little is known about how the catalyst density impacts the reaction rate. Using atomically dispersed Ir catalysts on hematite, we report a study on how the interplay between the catalyst density and the surface hole concentration influences the reaction kinetics. At low photon flux, where surface hole concentrations are low, faster charge transfer was observed on photoelectrodes with low catalyst density compared to high catalyst density; at high photon flux and high applied potentials, where surface hole concentrations are moderate or high, slower surface charge recombination was afforded by low-density catalysts. The results support that charge transfer between the light absorber and the catalyst is reversible; they reveal the unexpected benefits of low-density catalyst loading in facilitating forward charge transfer for desired chemical reactions. It is implied that for practical solar water splitting devices, a suitable catalyst loading is important for maximized performance.  相似文献   

3.
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2-based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.  相似文献   

4.
制备了一种可见光响应的光催化剂BiYWO6, 该体系是Bi2WO6-Y2WO6的伪二元固溶体, 其禁带宽度为2.71 eV. 其负载了助催化剂后, 可在紫外光和可见光下完全分解水生成氢气和氧气, 其中负载RuO2助催化剂的BiYWO6具有最好的光催化活性. 通过对光催化反应前后的BiYWO6和助催化剂的表面各元素的化学状态的研究证实了RuO2/BiYWO6体系的稳定性. 比较分析了BiYWO6的能带结构, 认为可见光完全分解水的性能可归因于Y和Bi在固溶体BiYWO6中形成了合适的能带结构.  相似文献   

5.
Poly (triazine imide) (PTI/Li+Cl), one of the crystalline versions of polymeric carbon nitrides, holds great promise for photocatalytic overall water splitting. In principle, the photocatalytic activity of PTI/Li+Cl is closely related to the morphology, which could be reasonably tailored by the modulation of the polycondensation process. Herein, we demonstrate that the hexagonal prisms of PTI/Li+Cl could be converted to hexagonal nanosheets by adjusting the binary eutectic salts from LiCl/KCl or NaCl/LiCl to ternary LiCl/KCl/NaCl. Results reveal that the extension of in-plane conjugation is preferred, when the polymerisation was performed in the presence of ternary eutectic salts. The hexagonal nanosheets bears longer lifetimes of charge carriers than that of hexagonal prisms due to lower intensity of structure defects and shorter hopping distance of charge carriers along the stacking direction of triazine nanosheets. The optimized hexagonal nanosheets exhibits a record apparent quantum yield value of 25 % (λ=365 nm) for solar hydrogen production by one-step excitation overall water splitting.  相似文献   

6.
The development of highly efficient non-precious metal catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is key for large-scale hydrogen evolution through water splitting technology. Here, we report an air-stable Cu-based nanostructure consisting of Mn doped CuCl and CuO (CuCl/CuO(Mn)-NF) as a dual functional electrocatalyst for water splitting. CuCl is identified as the main active component, together with Mn doping and the synergistic effect between CuCl and CuO are found to make responsibility for the excellent OER and HER catalytic activity and stability. The assembled electrolyzes also exhibit decent water splitting performance. This work not only provides a simple method for preparing Cu-based composite catalyst, but also demonstrates the great potential of Cu-based non-noble metal electrocatalysts for water splitting and other renewable energy conversion technologies.  相似文献   

7.
In situ photo-deposition of both Pt and CoOx cocatalysts on the facets of poly (triazine imide) (PTI) crystals has been developed for photocatalytic overall water splitting. However, the undesired backward reaction (i.e., water formation) on the noble Pt surface is a spontaneously down-hill process, which restricts their efficiency to run the overall water splitting reaction. Herein, we demonstrate that the efficiency for photocatalytic overall water splitting could be largely promoted by the decoration of Rh/Cr2O3 and CoOx as H2 and O2 evolution cocatalysts, respectively. Results reveal that the dual cocatalysts greatly extract charges from bulk to surface, while the Rh/Cr2O3 cocatalyst dramatically restrains the backward reaction, achieving an apparent quantum efficiency (AQE) of 20.2 % for the photocatalytic overall water splitting reaction.  相似文献   

8.
Photocatalytic water splitting and carbon dioxide (CO2) reduction provide promising solutions to global energy and environmental issues. In recent years, metal-organic frameworks (MOFs), a class of crystalline porous solids featuring well-defined and tailorable structures as well as high surface areas, have captured great interest toward photocatalytic water splitting and CO2 reduction. In this review, the semiconductor-like behavior of MOFs is first discussed. We then summarize the recent advances in photocatalytic water splitting and CO2 reduction over MOF-based materials and focus on the unique advantage of MOFs for clarifying the structure-property relationship in photocatalysis. In addition, some representative characterization techniques have been presented to unveil the photocatalytic kinetics and reaction intermediates in MOF-based systems. Finally, the challenges, and perspectives for future directions are proposed.  相似文献   

9.
A core‐shell structure with CuO core and carbon quantum dots (CQDs) and carbon hollow nanospheres (CHNS) shell was prepared through facile in‐situ hydrothermal process. The composite was used for non‐enzymatic hydrogen peroxide sensing and electrochemical overall water splitting. The core‐shell structure was established from the transmission electron microscopy image analysis. Raman and UV‐Vis spectroscopy analysis confirmed the interaction between CuO and CQDs. The electrochemical studies showed the limit of detection and sensitivity of the prepared composite as 2.4 nM and 56.72 μA μM?1 cm?2, respectively. The core‐shell structure facilitated better charge transportation which in turn exhibited elevated electro‐catalysis towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting. The overpotential of 159 mV was required to achieve 10 mA cm?2 current density for HER and an overpotential of 322 mV was required to achieve 10 mA cm?2 current density for OER in 1.0 M KOH. A two‐electrode system was constructed for overall water splitting reaction, which showed 10 and 50 mA cm?2 current density at 1.83 and 1.96 V, respectively. The prepared CuO@CQDs@CHNS catalyst demonstrated excellent robustness in HER and OER catalyzing condition along with overall water splitting reaction. Therefore, the CuO@CQDs@CHNS could be considered as promising electro‐catalyst for H2O2 sensing, HER, OER and overall water splitting.  相似文献   

10.
Both hydrogen (H2) and copper ions (Cu+) can be used as anti-cancer treatments. However, the continuous generation of H2 molecules and Cu+ in specific sites of tumors is challenging. Here we anchored Cu2+ on carbon photocatalyst (Cu@CDCN) to allow the continuous generation of H2 and hydrogen peroxide (H2O2) in tumors using the two-electron process of visible water splitting. The photocatalytic process also generated redox-active Cu-carbon centers. Meanwhile, the Cu2+ residues reacted with H2O2 (the obstacle to the photocatalytic process) to accelerate the two-electron process of water splitting and cuprous ion (Cu+) generation, in which the Cu2+ residue promoted a pro-oxidant effect with glutathione through metal-reducing actions. Both H2 and Cu+ induced mitochondrial dysfunction and intracellular redox homeostasis destruction, which enabled hydrogen therapy and cuproptosis to inhibit cancer cell growth and suppress tumor growth. Our research is the first attempt to integrate hydrogen therapy and cuproptosis using metal-enhanced visible solar water splitting in nanomedicine, which may provide a safe and effective cancer treatment.  相似文献   

11.
In this work, we studied the electronic band structure of the halogen (F, Cl, and Br) functionalized graphdiynes (GDYs) by using hybrid density functional theory. The results revealed that the bandgap energies of modified GDYs increase as the number of halogen atoms increases. It is also found that the position of the valence band maximum (VBM) is influenced by the electronegativity of halogen atoms. The higher the electronegativity, the deeper the VBM of the GDYs modified by the same number of halogen atoms. Importantly, our results revealed that the bandgap of GDY could be effectively tuned by mixing types of halogen atoms. The new generated conduction band and valence band edges are properly aligned with the oxidation and reduction potentials of water. Further thermodynamic analysis confirms that some models with mixing types of halogen atoms exhibit higher performance of overall photocatalytic water splitting than non-mixing models. This work provides useful insights for designing efficient photocatalysts that can be used for overall water splitting.  相似文献   

12.
The production of green hydrogen through photocatalytic water splitting is crucial for a sustainable hydrogen economy and chemical manufacturing. However, current approaches suffer from slow hydrogen production (<70 μmol ⋅ gcat−1 ⋅ h−1) due to the sluggish four-electrons oxygen evolution reaction (OER) and limited catalyst activity. Herein, we achieve efficient photocatalytic water splitting by exploiting a multifunctional interface between a nano-photocatalyst and metal–organic framework (MOF) layer. The functional interface plays two critical roles: (1) enriching electron density directly on photocatalyst surface to promote catalytic activity, and (2) delocalizing photogenerated holes into MOF to enhance OER. Our photocatalytic ensemble boosts hydrogen evolution by ≈100-fold over pristine photocatalyst and concurrently produces oxygen at ideal stoichiometric ratio, even without using sacrificial agents. Notably, this unique design attains superior hydrogen production (519 μmol ⋅ gcat−1 ⋅ h−1) and apparent quantum efficiency up to 13-fold and 8-fold better than emerging photocatalytic designs utilizing hole scavengers. Comprehensive investigations underscore the vital role of the interfacial design in generating high-energy photoelectrons on surface-degenerate photocatalyst to thermodynamically drive hydrogen evolution, while leveraging the nanoporous MOF scaffold as an effective photohole sink to enhance OER. Our interfacial approach creates vast opportunities for designing next-generation, multifunctional photocatalytic ensembles using reticular chemistry with diverse energy and environmental applications.  相似文献   

13.
Efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions are key to water electrolysis. Herein, we report a built-in electric field (BEF) strategy to fabricate heterogeneous nickel phosphide-cobalt nanowire arrays grown on carbon fiber paper (Ni2P-CoCH/CFP) with large work function difference (ΔΦ) as bifunctional electrocatalysts for overall water splitting. Impressively, Ni2P-CoCH/CFP exhibits a remarkable catalytic activity for hydrogen and oxygen evolution reactions to obtain 10 mA cm−2, respectively. Moreover, the assembled lab-scale electrolyzer driven by an AAA battery delivers excellent stability after 50 h electrocatalysis with a 100 % faradic efficiency. Computational calculations combining with experiments reveal the interface-induced electric field effect facilitates asymmetrical charge distributions, thereby regulating the adsorption/desorption of the intermediates during reactions. This work offers an avenue to rationally design high-performance heterogeneous electrocatalysts.  相似文献   

14.
Based on hybrid density functional theory (DFT) calculations, we propose a new two-dimensional (2D) B-C-N material, graphitic- (g- ), with the promising prospect of metal-free photocatalysis. We find it to be a near ultraviolet (UV) absorbing direct band gap (3.69 eV) semiconductor with robust dynamical and mechanical stability. Estimating the band positions with respect to water oxidation and hydrogen reduction potential levels along with a detailed analysis of reaction mechanism of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), we observe that g- monolayer can be efficiently used for hydrogen fuel generation over entire pH range as well as for spontaneous water splitting at basic pH range. Upon biaxial strain application, band positions get realigned along with the free energy change that is involved in HER and OER. Consequently, operational range of pH for OER gets broadened and the proposed material exhibits the ability to perform spontaneous and simultaneous oxidation and reduction even in neutral pH. The combination of pH variation and applied strain can be used as a key to control the reducing and/or oxidizing abilities precisely for diverse photocatalytic reactions to attain environmental sustainability.  相似文献   

15.
Photocatalytic water splitting to obtain hydrogen energy can transform low-density solar to high density, new and clean energy in a clean way, which is one of the ideal ways to solve the energy crisis and environmental pollution. In this paper, The CoxP/hollow porous C3N4 composite photocatalytic material was synthesized by simple methods. The photocatalytic hydrogen production rate of CoxP/hollow porous C3N4 reaches 1602 μmol g−1 h−1, which is 151 times of that of pure C3N4. The reasons for the high photocatalytic H2 evolution activity of CoxP/hollow porous C3N4 could be summarized as follows: (1) the hollow and porous structure of C3N4 shows higher light capture efficiency, larger specific surface area and more surface active sites. (2) metalloid CoxP loaded forms the Schottky contact with C3N4, which improves the photogenerated charges separation efficiency of C3N4, prolongs the photogenerated charges lifetime and improves the photocatalytic H2 evolution activity of C3N4. (3) The higher conductivity of metalloid CoxP and the lower overpotential of hydrogen production are other reasons for the higher activity of photocatalytic hydrogen production of CoxP/hollow porous C3N4. This work provides an important role for the design of efficient, stable, and efficient construction of photocatalysts for solar energy conversion.  相似文献   

16.
17.
18.
Tantalum nitride (Ta3N5) has emerged as a promising photoanode material for photoelectrochemical (PEC) water splitting. However, the inefficient electron-hole separation remains a bottleneck that impedes its solar-to-hydrogen conversion efficiency. Herein, we demonstrate that a core–shell nanoarray photoanode of NbNx-nanorod@Ta3N5 ultrathin layer enhances light harvesting and forms a spatial charge-transfer channel, which leads to the efficient generation and extraction of charge carriers. Consequently, an impressive photocurrent density of 7 mA cm−2 at 1.23 VRHE is obtained with an ultrathin Ta3N5 shell thickness of less than 30 nm, accompanied by excellent stability and a low onset potential (0.46 VRHE). Mechanistic studies reveal the enhanced performance is attributed to the high-conductivity NbNx core, high-crystalline Ta3N5 mono-grain shell, and the intimate Ta−N−Nb interface bonds, which accelerate the charge-separation capability of the core–shell photoanode. This study demonstrates the key roles of nanostructure design in improving the efficiency of PEC devices.  相似文献   

19.
Nickel nanoparticle and graphene interfaces of various stoichiometries were created through electrodeposition techniques. The catalytic behavior of the electrodeposited films was investigated through spectro-electrochemical methodologies. UV-vis absorbance spectra of the electrodeposited films are significantly different in the air and alkaline medium. Furthermore, UV-vis and Raman spectroscopy confirmed the coupling of Ni nanoparticles (Ni-NP) with the graphene framework, along with NiO and Ni(OH)2. A combination of Raman and impedance spectroscopy revealed that the surface adsorption and charge transfer properties of the electrodeposited films are entirely dependent on the defects on graphene structure as well as distribution of Ni-NP on graphene. The electrodeposited films possess heterogeneous catalytic properties with a low overpotential of 50 mV (10 mA/cm−2) for hydrogen evolution reaction, as well as 601 mV and 391 mV (at 50 mA/cm−2) for the oxygen evolution reaction and urea oxidation reaction, respectively. In addition, eelectrodeposited samples show extraordinary overall water splitting performance by achieving a current density of 10 mA/cm2 at a very low applied potential of 1.38 V. This synergistic coupling of Ni and graphene renders the electrodeposited samples promising candidates as electrodes for overall water splitting in alkaline and urea-supplemented solutions.  相似文献   

20.
A sustainable photocatalyst for use with multiple purpose comprising demethylated lignin ( Fe3O4@D-wood ) was made by treatment of wood and iron oxide. Characterization followed by XRD, UV/Vis, photo-current studies, and electrochemical measurements. This material became subject of photocatalytic explorations for water treatment and material synthesis by radical photopolymerization. Exposure of Fe3O4@D-wood with artificial sunlight showed an improved activity considering photochemical oxidation of organic pollutants in the presence of H2O2. The efficient generation of reactive radicals brought this system also to photopolymerization. Here, radicals based on reactive oxygen species (ROS) generated in the catalytic cycle can be seen as the dominating species to initiate radical polymerization. A mixture of UDMA and TPGDA showed good reactivity with cumene hydroperoxide ( CHP ). Photocatalyst used for water treatment facilitates reuse for photopolymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号