首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the most efficient systems for photocatalytic hydrogen evolution, the Z-Scheme system, consisting of different semiconductors with a reversible donor–acceptor pair, has attracted great attention. Considering the non-toxicity and low cost of photocatalysts, a series of g-C3N4/α-Fe2O3 hybrids were rationally constructed based on the Z-Scheme mechanism for the first time, using a metal-organic framework template approach that can fine tune the compositions and properties of the hybrids. An optimized hybrid, g-C3N4/α-Fe2O3-2, exhibited prominent photocatalytic water splitting performance with a visible light response. Under irradiation of visible light (λ>420 nm), the hybrid shows a high durability and superior hydrogen production rate of 2066.2 μmol g−1 h−1 from water splitting, which is approximately three times greater than that of bulk g-C3N4 because of the effective separation of photo-excited charge carriers by two narrow band gap semiconductors, tightly coupled with the Z-Scheme structural feature.  相似文献   

2.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   

3.
In photosynthesis, solar energy is harvested by photosensitizers, and then, the excited electrons transfer via a Z-Scheme mode to enzymatic catalytic centers to trigger redox reactions. Herein, we constructed a core–shell Z-scheme heterojunction of semiconductor@single-atom catalysts (SACs). The oxygen-vacancy-rich ZnO core and single-atom Co−N4 sites supported on nitrogen-rich carbon shell (SA-Co-CN) act as the photosensitizer and the enzyme-mimicking active centers, respectively. Driven by built-in electric field across the heterojunction, photoexcited electrons could rapidly (2 ps) transfer from the n-type ZnO core to the p-type SA-Co-CN shell, finally boosting the catalytic performance of the surface-exposed single-atom Co−N4 sites for peroxymonosulfate (PMS) activation under light irradiation. The synergies between photocatalysis and heterogeneous Fenton-like reaction lead to phenomenally enhanced production of various reactive oxygen species for rapid degradation of various microcontaminants in water. Experimental and theoretical results validate that the interfacial coupling of SA-Co-CN with ZnO greatly facilitates PMS adsorption and activation by reducing the adsorption energy and enhancing the cascade electron transfer processes for the photo-Fenton-like reaction.  相似文献   

4.
Hydrogen peroxide (H2O2) has received increasing attention because it is not only a mild and environmentally friendly oxidant for organic synthesis and environmental remediation but also a promising new liquid fuel. The production of H2O2 by photocatalysis is a sustainable process, since it uses water and oxygen as the source materials and solar light as the energy. Encouraging processes have been developed in the last decade for the photocatalytic production of H2O2. In this Review we summarize research progress in the development of processes for the photocatalytic production of H2O2. After a brief introduction emphasizing the superiorities of the photocatalytic generation of H2O2, the basic principles of establishing an efficient photocatalytic system for generating H2O2 are discussed, highlighting the advanced photocatalysts used. This Review is concluded by a brief summary and outlook for future advances in this emerging research field.  相似文献   

5.
This perspective article serves to highlight the contributions to this special volume of Journal of Organometallic Chemistry entitled “Organometallics for Energy Conversion”. The key features of dihydrogen coordination to transition metal complexes are discussed in the context of the challenge of producing and utilizing hydrogen as the energy carrier of the future. Ultimately, production of H2 fuel from water will be needed rather than its current production principally from natural gas. Schemes involving use of solar energy to split water are currently of high interest, and a massive research effort is underway worldwide to accomplish this goal. This is primarily a chemistry problem (rather than engineering or materials), and it can then be assumed that organometallic chemistry will play an important role for both hydrogen production and storage.  相似文献   

6.
Graphdiyne (GDY) with a direct band gap, excellent carrier mobility and uniform pores, is regarded as a promising photocatalytic material for solar energy conversion, while the research on GDY in photocatalysis is a less developed field. Herein, the distinctive structure, adjustable band gap, and electronic properties of GDY for photocatalysis is firstly summarized. The construction and progress of GDY-based photocatalysts for solar energy conversion, including H2 evolution reaction (HER), CO2 reduction reaction (CO2RR) and N2 reduction reaction (NRR) are then elaborated. At last, the challenges and perspectives in developing GDY-based photocatalysts for solar fuel production are discussed. It is anticipated that a timely Minireview will be helpful for rapid progress of GDY in solar energy conversion.  相似文献   

7.
Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co‐production of H2 and O2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n‐type doping/de‐doping reaction of the solid‐state polytriphenylamine‐based battery electrode, we decouple the H2 and O2 production in acid water electrolysis. In this architecture, the H2 and O2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane‐free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting.  相似文献   

8.
Water oxidation reaction leaves room to be improved in the development of various solar fuel productions, because of the kinetically sluggish 4-electron transfer process of oxygen evolution reaction. In this work, we realize reactive oxygen species (ROS), H2O2 and OH⋅, formations by water oxidation with total Faraday efficiencies of more than 90 % by using inter-facet edge (IFE) rich WO3 arrays in an electrolyte containing CO32−. Our results demonstrate that the IFE favors the adsorption of CO32− while reducing the adsorption energy of OH⋅, as well as suppresses surface hole accumulation by direct 1-electron and indirect 2-electron transfer pathways. Finally, we present selective oxidation of benzyl alcohol by in situ using the formed OH⋅, which delivers a benzaldehyde production rate of ≈768 μmol h−1 with near 100 % selectivity. This work offers a promising approach to tune or control the oxidation reaction in an aqueous solar fuel system towards high efficiency and value-added product.  相似文献   

9.
The present paper describes the modification and solar hydrogen production studies employing a new semiconductor-septum (SC-SEP) photoelectrode ns-TiO2/In2O3 based photoelectrochemical solar cell. The current-voltage characteristics of the above SC-SEP cell revealed that an enhancement in short-circuit current (ISC) up to three times (5 ~ 14.6 mA cm?2). The optimum hydrogen production rate was found to be 11.8 lh?1 m?2 for 5M H2SO4 and with a further increase in H2SO4 concentration, the hydrogen production rate was found to be invariant. In yet another part of our study instead of using new SC-SEP solar cell design, we used another new oxide material form such as ns-TiO2/WO3. The ns-TiO2/WO3 exhibited a high photocurrent and photo-voltage of 15.6 mA cm?2, 960 mV, respectively. The ns-TiO2/WO3 electrode exhibited a higher hydrogen gas evolution rate of 13.8 lh?1 m?2. Evidences and arguments are put forward to show that, whereas for the bare ns-TiO2 electrode, the improvement in the performance of this photo-electrode compared with its original form was due to the higher quantum yield. In the case of ns-TiO2/In2O3 and ns-TiO2/WO3 photo-electrodes, the improvement is due to the improved spectral response resulting from decrease of energy band gap.  相似文献   

10.
Photocatalytic water splitting using semiconductor photocatalysts has been considered as a “green” process for converting solar energy into hydrogen. The pioneering work on electrochemical photolysis of water at TiO2 electrode, reported by Fujishima and Honda in 1972, ushered in the area of solar fuel. As the real ultimate solution for solar fuel‐generation, overall water splitting has attracted interest from researchers for some time, and a variety of inorganic photocatalysts have been developed to meet the challenge of this dream reaction. To date, high‐efficiency hydrogen production from pure water without the assistance of sacrificial reagents remains an open challenge. In this Focus Review, we aim to provide a whole picture of overall water splitting and give an outlook for future research.  相似文献   

11.
The natural Mn4Ca cluster in photosystem II serves as a blueprint to develop artificial water‐splitting catalysts for the generation of solar fuel in artificial photosynthesis. Although significant advances have recently been achieved, it remains a great challenge to prepare robust artificial Mn4Ca clusters that precisely mimic the structure and function of the biological catalyst. Herein, we report the isolation and structural characterization of two Mn4CaO4 complexes with polar solvent molecules, acetonitrile or N,N‐dimethylformamide, which closely mimics the two water molecules on the calcium ion, as well as the oxidation states of the four manganese ions and the main geometric structure of the natural Mn4Ca cluster. These new artificial Mn4Ca complexes provide important chemical clues to understand the structure and mechanism of the biological system.  相似文献   

12.
Herein, we describe the use of Pd nanoparticles immobilized on an amino‐functionalized siliceous mesocellular foam for the catalytic oxidation of H2O. The Pd nanocatalyst proved to be capable of mediating the four‐electron oxidation of H2O to O2, both chemically and photochemically. The Pd nanocatalyst is easy to prepare and shows high chemical stability, low leaching, and recyclability. Together with its promising catalytic activity, these features make the Pd nanocatalyst of potential interest for future sustainable solar‐fuel production.  相似文献   

13.
Polyazine‐bridged RuIIRhIIIRuII complexes with two halide ligands, Cl? or Br?, bound to the catalytically active Rh center are efficient single‐component photocatalysts for H2O reduction to H2 fuel, with the coordination environment on Rh impacting photocatalysis. Herein reported is a new, halide‐free RuIIRhIIIRuII photocatalyst with OH? ligands bound to Rh, further enhancing the photocatalytic reactivity of the structural motif. H2 production experiments using the photocatalyst bearing OH? ligands at Rh relative to the analogues bearing halides at Rh in solvents of varying polarity (DMF, CH3CN, and H2O) suggest that ion pairing with halides deactivates photocatalyst function, representing an exciting phenomenon to exploit in the development of catalysts for solar H2 production schemes.  相似文献   

14.
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N−Cu1−S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.  相似文献   

15.
《中国化学快报》2023,34(6):108007
Water splitting by photoelectrochemical (PEC) processes to convert solar energy into hydrogen energy using semiconductors is regarded as one of the most ideal methods to solve the current energy crisis and has attracted widespread attention. Herein, Co-based metal-organic framework (Co(bpdc)(H2O)4 (Co-MOF) nanosheets as passivation layers were in-situ constructed on the surface of BiVO4 films through an uncomplicated hydrothermal method (Co-MOF/BiVO4). Under AM 1.5G illumination, synthesized Co-MOF/BiVO4 electrode exhibited a 4-fold higher photocurrent than bare BiVO4, measuring 6.0 mA/cm2 at 1.23 V vs. RHE in 1 mol/L potassium borate electrolyte (pH 9.5) solution. Moreover, the Co-MOF/BiVO4 film demonstrated a 96% charge separation efficiency, a result caused by an inhibited recombination rate of photogenerated electrons and holes by the addition of Co-MOF nanosheets. This work provides an idea for depositing inexpensive 2D Co-MOF nanosheets on the photoanode as an excellent passivation layer for solar fuel production.  相似文献   

16.
The BiVO4 photoelectrochemical (PEC) electrode in tandem with a photovoltaic (PV) cell has shown great potential to become a compact and cost‐efficient device for solar hydrogen generation. However, the PEC part is still facing problems such as the poor charge transport efficiency owing to the drag of oxygen vacancy bound polarons. In the present work, to effectively suppress oxygen vacancy formation, a new route has been developed to synthesize BiVO4 photoanodes by using a highly oxidative two‐dimensional (2D) precursor, bismuth oxyiodate (BiOIO3), as an internal oxidant. With the reduced defects, namely the oxygen vacancies, the bound polarons were released, enabling a fast charge transport inside BiVO4 and doubling the performance in tandem devices based on the oxygen vacancy eliminated BiVO4. This work is a new avenue for elaborately designing the precursor and breaking the limitation of charge transport for highly efficient PEC‐PV solar fuel devices.  相似文献   

17.
TiO2 has received tremendous attention owing to its potential applications in the field of photocatalysis for solar fuel production and environmental remediation. This review mainly describes various modification strategies and potential applications of TiO2 in efficient photocatalysis. In past few years, various strategies have been developed to improve the photocatalytic performance of TiO2, including noble metal deposition, elemental doping, inorganic acids modification, heterojunctions with other semiconductors, dye sensitization and metal ion implantation. The enhanced photocatalytic activities of TiO2-based material for CO2 conversion, water splitting and pollutants degradation are highlighted in this review.  相似文献   

18.
The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2/N2 and H2/CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic‐electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment.  相似文献   

19.
Among various technologies for hydrogen production, the use of oxygenic natural photosynthesis has a great potential as can use clean and cheap sources—water and solar energy. In oxygenic photosynthetic microorganisms electrons and protons produced from water and redirected by the photosynthetic electron-transport chain via ferredoxin to the hydrogen-producing enzymes hydrogenase or nitrogenase. By these enzymes, e? and H+ recombine and form molecular hydrogen. Hydrogenase activity can be very high but is extremely sensitive to the photosynthetically evolved O2 that leads to reduced and unstable H2 production. However, presently, several approaches are developed to improve the energetic efficiency to generate H2. This review examines the main available pathways to improve the photosynthetic H2 production.  相似文献   

20.
Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ>515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号