首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Integration of MnOx into the carbon matrix proves a viable strategy to improve the electrochemical performance of MnOx materials. Mn3O4 nanoparticle-decorated N-doped carbon composites (Mn3O4@N-doped carbon) were facilely prepared from a non-porous eight-fold interpenetrated ZnII-based MOF, which involves first synthesis of bimetallic Mn/Zn-MOF in one-pot reaction followed by direct pyrolysis at 1000 °C. In 0.1 m KOH solution, the optimal Mn3O4@N-doped carbon exhibits decent oxygen reduction activity with the onset potential (Eonset) of 0.94 V (vs. RHE) and half-wave potential (E1/2) of 0.81 V (vs. RHE), excellent methanol tolerance as well as good durability.  相似文献   

2.
Oxygen equilibrium pressures have been measured in the temperature range 800 °C to 1000 °C by coulometric/potentiometric techniques for several equilibrium regions in the ternary systems M / P / O (M = Co, Ni). In both systems oxygen coexistence pressures of three‐phase equilibrium solids phosphide/phosphate are about 3 to 5 orders of magnitude smaller than p(O2) above the corresponding Ms / MOs system. Heats of formation Δf298 and standard entropies 298 for the phosphates have been obtained from 2nd and 3rd law evaluation of the temperature dependence of the oxygen coexistence pressures. Thermodynamic data from literature for the phosphides of cobalt and nickel and estimated heat capacities for the anhydrous phosphates Co3(PO4)2, Co2P2O7, Ni3(PO4)2, Ni2P2O7 and Ni2P4O12 were used for these calculations. Thus obtained enthalpies and entropies are compared to results from thermodynamic modelling of observed solid phase equilibria in the ternary systems M / P / O (M = Co, Ni).  相似文献   

3.
Catalytic diesel soot combustion was examined using a series of Mn2O3 catalysts with different morphologies, including plate, prism, hollow spheres and powders. The plate‐shaped Mn2O3 (Mn2O3‐plate) exhibited superior carbon soot combustion activity compared to the prism‐shaped, hollow‐structured and powdery Mn2O3 under both tight and loose contact modes at soot combustion temperatures (T50) of 327 °C and 457 °C, respectively. Comprehensive characterization studies using scanning electron microscopy, scanning transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, temperature‐programmed reduction and oxygen release measurements, revealed that the improved activity of Mn2O3‐plate was mainly attributed to the high oxygen release rate of surface‐adsorbed active oxygen species, which originated from oxygen vacancy sites introduced during the catalyst preparation, rather than specific surface‐exposed planes. The study provides new insights for the design and synthesis of efficient oxidation catalysts for carbon soot combustion as well as for other oxidation reactions of harmful hydrocarbon compounds.  相似文献   

4.
The calculated difference in the standard heat of formation Δ ΔfH°(298.15) of n- and i-C4H3 free radicals is 37.9 kJ mol−1 for G3MP2B3 and 45.0 kJ mol−1 for CCSD(T)-CBS (W1U) calculations, which seems to preclude the direct even-carbon radical pathway to benzene and higher PAH (polycyclic aromatic hydrocarbon) formation including soot in a hydrocarbon flame. For the phenyl-type σ-radicals listed in the title, absolute values of ΔfH°(298.15) have been calculated using G3MP2B3-computed values of bond dissociation energies D°(298.15) and combined with experimental values of ΔfH° (298.15) for the parent hydrocarbon because of a slight systematic overprediction of the thermodynamic stability of large PAHs by the applied computational G3MP2B3 method. Standard enthalpies of formation ΔfH°(298.15) as well as absolute entropies S° and heat capacities C°p are given for a series of π- and σ-free radicals important to combustion as a function of temperature. A spread of roughly 40 kJ mol−1 in the average C H bond strength of PAH leading to σ-radicals has been calculated, the lowest leading to 4-phenanthryl (463.6 kJ mol−1), the highest leading to 2-biphenylyl radical (502.5 kJ mol−1). © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 395–415, 2008  相似文献   

5.
Preparing nonprecious metal catalysts with high activity in the oxygen reduction reaction (ORR) can promote the development of energy conversion devices. Support‐free porous Mn2O3 was synthesized by a facile aerosol‐spray‐assisted approach (ASAA) and subsequent thermal treatment, and exhibited ORR activity that is comparable to commercial Pt/C The catalyst also exhibits notably higher activity than other Mn‐based oxides, such as Mn3O4 and MnO2. The rotating ring disk electrode (RRDE) study indicates a typical 4‐electron ORR pathway on Mn2O3. Furthermore, the porous Mn2O3 demonstrates considerable stability and a good methanol tolerance in alkaline media. In light of the low cost and high earth abundance of Mn, the highly active Mn2O3 is a promising candidate to be used as a cathode material in metal–air batteries and alkaline fuel cells.  相似文献   

6.
Some oxide catalysts, such as RuO2/Ti, IrO2/Ti and IrM(M: Ru, Mo, W, V)Ox/Ti binary oxide electrodes, were prepared by using a dip-coating method on a Ti substrate. Their catalytic behavior for the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H2SO4 at 60 °C. These catalysts were found to exhibit considerably high activity, and the most active one among them was Ir0.6V0.4O2/Ti prepared at 450 °C, showing onset potential for the ORR at about 0.86 V–0.90 (vs RHE).  相似文献   

7.
The regulation of electron distribution of single-atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single-atomic Mn sites decorated with atomic clusters by an innovative combination of post-adsorption and secondary pyrolysis. The X-ray absorption spectroscopy confirms the formation of Mn sites via Mn-N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn-N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn-N4C catalyst exhibits excellent ORR activity with half-wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn-air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications.  相似文献   

8.
E. M. F. of the Cell, Cd-Hg (2-phase)/CdAc2(m), Hg2Ac2(s)/Hg was measured at 20°, 25°, 30° and 40°C. The standard e. m. f. of the cell, Cd/CdAc3(m), Hg2Ac2(c)/Hg was evaluated as E°=1.1500?11.09×10?4T+1.06×10?8T2 The thermodynamic data of the reaction, Cd(c) + Hg2Ac2(c)=2Hg(l)+Cd++(aq)+2Ac?(aq) at 25°C were estimated as ΔF°=?42,139, ΔH°=?48,698 cal mole?1 and ΔS°=?22.0 cal deg?1 mole?1 at 25°C. The thermodynamic data for the formation of Hg2Ac2(s) were evaluated as ΔFf°=?202.3, ΔHf°=?154.5 Kcal mole?1 and S°=72.9 cal deg?1 mole?1. From measurements of the heats of solution of CdAc2·2H2O in aqueous solution, the relative partial molal enthalpies of cadmium acetate in aqueous solution were estimated.  相似文献   

9.
Nitrogen-doped carbons (N/Cs) manifest good catalytic performance for oxygen reduction reaction (ORR) for fuel cell systems. However, to date, controversies remain on the role of active sites in N/Cs. In the present study, ORR test was conducted on three N/Cs in O2-saturated 0.1 M KOH aqueous solution, where apparent linear correlation between graphitic N contents and ORR activity was observed. Theoretical calculations demonstrated that graphitic N doping is energetically more favorable than that of pyridinic N doping for ORR and the pyridinic N leads to more preferential with 2 e ORR pathway. These results reveal that graphitic N plays a key role in N/Cs mediated ORR activity. This work lays a solid foundation on identifying the active sites in heteroatom-doped carbons and can be exploited for rational design and engineering of effective carbon-based ORR catalysts.  相似文献   

10.
A mesoporous MnCo2O4 electrode material is made for bifunctional oxygen electrocatalysis. The MnCo2O4 exhibits both Co3O4‐like activity for oxygen evolution reaction (OER) and Mn2O3‐like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo2O4 is as low as 0.83 V. By XANES and XPS investigation, the notable activity results from the preferred MnIV‐ and CoII‐rich surface. The electrode material can be obtained on large‐scale with the precise chemical control of the components at relatively low temperature. The surface state engineering may open a new avenue to optimize the electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo2O4 could be used in metal–air batteries and/or other energy devices.  相似文献   

11.
In nature, cytochrome c oxidases catalyze the 4e oxygen reduction reaction (ORR) at the heme/Cu site, in which CuI is used to assist O2 activation. Because of the thermodynamic barrier to generate CuI, synthetic Fe-porphyrin/Cu complexes usually show moderate electrocatalytic ORR activity. We herein report on a Co-corrole/Co complex 1-Co for energy-efficient electrocatalytic ORR. By hanging a CoII ion over Co corrole, 1-Co realizes electrocatalytic 4e ORR with a half-wave potential of 0.89 V versus RHE, which is outstanding among corrole-based electrocatalysts. Notably, 1-Co outperforms Co corrole hanged with CuII or ZnII. We revealed that the hanging CoII ion can provide an electron to improve O2 binding thermodynamically and dynamically, a function represented by the biological CuI ion of the heme/Cu site. This work is significant to present a remarkable ORR electrocatalyst and to show the vital role of a second-sphere redox-active metal ion in promoting O2 binding and activation.  相似文献   

12.
The development of efficient catalyst for selective oxidation of hydrocarbon to functional compounds remains a challenge. Herein, mesoporous Co3O4 (mCo3O4-350) showed excellent catalytic activity for selective oxidation of aromatic-alkanes, especially for oxidation of ethylbenzene with a conversion of 42 % and selectivity of 90 % for acetophenone at 120 °C. Notably, mCo3O4 presented a unique catalytic path of direct oxidation of aromatic-alkanes to aromatic ketones rather than the conventional stepwise oxidation to alcohols and then to ketones. Density functional theory calculations revealed that oxygen vacancies in mCo3O4 activate around Co atoms, causing electronic state change from Co3+(Oh)→Co2+(Oh). Co2+(Oh) has great attraction to ethylbenzene, and weak interaction with O2, which provide insufficient O2 for gradual oxidation of phenylethanol to acetophenone. Combined with high energy barrier for forming phenylethanol, the direct oxidation path from ethylbenzene to acetophenone is kinetically favorable on mCo3O4, sharply contrasted to non-selective oxidation of ethylbenzene on commercial Co3O4.  相似文献   

13.
Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e-pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e-pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx/carbon nanotube hybrids, a construction-driven approach based on an extended “dynamic active site saturation” model that aims to create the maximum number of 2 e ORR sites by directing the secondary ORR electron transfer towards the 2 e intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics.  相似文献   

14.
The molecular structure, electrochemistry, spectroelectrochemistry and electrocatalytic oxygen reduction reaction (ORR) features of two CoII porphyrin(2.1.2.1) complexes bearing Ph or F5Ph groups at the two meso-positions of the macrocycle are examined. Single crystal X-ray analysis reveal a highly bent, nonplanar macrocyclic conformation of the complex resulting in clamp-shaped molecular structures. Cyclic voltammetry paired with UV/Vis spectroelectrochemistry in PhCN/0.1 M TBAP suggest that the first electron addition corresponds to a macrocyclic-centered reduction while spectral changes observed during the first oxidation are consistent with a metal-centered CoII/CoIII process. The activity of the clamp-shaped complexes towards heterogeneous ORR in 0.1 M KOH show selectivity towards the 4e ORR pathway giving H2O. DFT first-principle calculations on the porphyrin catalyst indicates a lower overpotential for 4e ORR as compared to the 2e pathway, consistent with experimental data.  相似文献   

15.
The catalytic activity of manganese oxynitrides in the oxygen reduction reaction (ORR) was investigated in alkaline solutions to clarify the effect of the incorporated nitrogen atoms on the ORR activity. These oxynitrides, with rock‐salt‐like structures with different nitrogen contents, were synthesized by reacting MnO, Mn2O3, or MnO2 with molten NaNH2 at 240–280 °C. The anion contents and the Mn valence states were determined by combustion analysis, powder X‐ray diffraction, and X‐ray absorption near‐edge structure analysis. An increase in the nitrogen content of rock‐salt‐based manganese oxynitrides increases the valence of the manganese ions and reinforces the catalytic activity for the ORR in 1 m KOH solution. Nearly single‐electron occupancy of the antibonding eg states and highly covalent Mn?N bonding thus enhance the ORR activity of nitrogen‐rich manganese oxynitrides.  相似文献   

16.
A ruthenium-sulfur carbonyl cluster electrocatalyst, Ru x S y (CO) n , was synthesized by pyrolysis of Ru3(CO)12 and elemental sulfur in a sealed ampoule at 300 °C. The pyrolyzed compound was characterized by DSC, FT-IR, XRD and SEM (EDX) techniques. The electrocatalytic activity and kinetic parameters for the molecular oxygen reduction were determined by a rotating ring-disk electrode (RRDE) in a 0.5 M H2SO4 solution at 25 °C. The cathodic polarization indicates two Tafel slopes: −0.124 ± 0.002 V dec−1 at low and −0.254 ± 0.003 V dec−1 at high overpotentials, and first-order kinetics with respect to O2 concentration. From the analysis of Levich plots and RRDE results, the oxygen reduction on Ru x S y (CO) n was determined to proceed mostly via a multielectron transfer path (4e) to water formation ( >94%). Received: 4 March 1999 / Accepted: 26 May 1999  相似文献   

17.
The reaction of trinuclear acetate complexes Fe2MO(AcO)6(H2O)3 (M = Ni2+, Co2+) with 4,4′-bipyridine (bpy) results, depending on the reaction conditions, in porous coordination polymers with the composition Fe2MO(AcO)6(bpy)1.5 (with retention of the metal core Fe2MO(AcO)6) or nonporous coordination polymers with the composition M2(AcO)4(bpy)2 (with destruction of the metal core Fe2MO(AcO)6). The adsorption and desorption properties of the compounds Fe2MO(AcO)6(bpy)1.5 with respect to nitrogen and hydrogen were studied. The reaction of hexanuclear benzoate complex Mn6O2(PhCOO)10(MeCN)4 with bpy or trans-1,2-bis(4-pyridyl)ethylene (bpe) in DMF results in destruction of the metal core Mn6O2(PhCOO)10 and formation of nonporous coordination polymers, while the pivalate complex Mn6O2(Piv)10(EtOH)3(HPiv) under the same conditions gives rise to the coordination polymer containing Mn6O2(Piv)10 structural blocks.  相似文献   

18.
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.  相似文献   

19.
Single atom sites (SAS) often undergo structural recombination in oxygen reduction reaction (ORR), while the effect of valence state and reconstruction on active centers needs to be investigated thoroughly. Herein, the Mn-SAS catalyst with uniform and precise Mn-N4 configuration is rationally designed. We utilize operando synchrotron radiation to track the dynamic evolution of active centers during ORR. Under the applied potential, the structural evolution of Mn-N4 into Mn-N3C and further into Mn-N2C2 configurations is clarified. Simultaneously, the valence states of Mn are increased from +3.0 to +3.8 and then decreased to +3.2. When the potential is removed, the catalyst returned to its initial Mn+3.0-N4 configuration. Such successive evolutions optimize the electronic and geometric structures of active centers as evidenced by theory calculations. The evolved Mn+3.8-N3C and Mn+3.2-N2C2 configurations respectively adjust the O2 adsorption and reduce the energy barrier of rate-determining step. Thus, it can achieve an onset potential of 0.99 V, superior stability over 10,000 cycles, and a high turnover frequency of 1.59 s−1 at 0.85 VRHE. Our present work provides new insights into the construction of well-defined SAS catalysts by regulating the valence states and configurations of active centers.  相似文献   

20.
Facile evaluation of oxygen reduction reaction (ORR) kinetics for electrocatalysts is critical for sustainable fuel-cell development and industrial H2O2 production. Despite great success in ORR studies using mainstream strategies, such as the membrane electrode assembly, rotation electrodes, and advanced surface-sensitive spectroscopy, the time and spatial distribution of reactive oxygen species (ROS) intermediates in the diffusion layer remain unknown. Using time-dependent electrochemiluminescence (Td-ECL), we report an intermediate-oriented method for ORR kinetics analysis. Owing to multiple ultrasensitive stoichiometric reactions between ROS and the ECL emitter, except for electron transfer numbers and rate constants, the potential-dependent time and spatial distribution of ROS were successfully obtained for the first time. Such exclusively uncovered information would guide the development of electrocatalysts for fuel cells and H2O2 production with maximized activity and durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号