首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods that enable the direct C−H alkoxylation of complex organic molecules are significantly underdeveloped, particularly in comparison to analogous strategies for C−N and C−C bond formation. In particular, almost all methods for the incorporation of alcohols by C−H oxidation require the use of the alcohol component as a solvent or co-solvent. This condition limits the practical scope of these reactions to simple, inexpensive alcohols. Reported here is a photocatalytic protocol for the functionalization of benzylic C−H bonds with a wide range of oxygen nucleophiles. This strategy merges the photoredox activation of arenes with copper(II)-mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C−O bonds with high site selectivity, chemoselectivity, and functional-group tolerance using only two equivalents of the alcohol coupling partner. This method enables the late-stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential applications in synthesis and medicinal chemistry.  相似文献   

2.
A rhodium(I)-catalyzed enantioselective silylation of aliphatic C−H bonds for the synthesis of silicon-stereogenic dihydrobenzosiloles is demonstrated. This reaction involves a highly enantioselective intramolecular C(sp3)−H silylation of dihydrosilanes, followed by a stereospecific intermolecular alkene hydrosilylation leading to the asymmetrically tetrasubstituted silanes. A wide range of dihydrosilanes and alkenes displaying various functional groups are compatible with this process, giving access to a variety of highly functionalized silicon-stereogenic dihydrobenzosiloles in good to excellent yields and enantioselectivities.  相似文献   

3.
Desaturation of inert aliphatic C−H bonds in alkanes to form the corresponding alkenes is challenging. In this communication, a new and practical strategy for remote site-selective desaturation of amides via radical chemistry is reported. The readily installed N-allylsulfonylamide moiety serves as an N radical precursor. Intramolecular 1,5-hydrogen atom transfer from an inert C−H bond to the N-radical generates a translocated C-radical which is subsequently oxidized and deprotonated to give the corresponding alkene. The commercially available methanesulfonyl chloride is used as reagent and a Cu/Ag-couple as oxidant. The remote desaturation is realized on different types of unactivated sp3-C−H bonds. The potential synthetic utility of this method is further demonstrated by the dehydrogenation of natural product derivatives and drugs.  相似文献   

4.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp3)−H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)−H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.  相似文献   

5.
A series of exo-olefin compounds ((CH3)2C(PhY)−CH2C(=CH2)PhY) were prepared by selective cationic dimerization of α-methylstyrene (αMS) derivatives (CH2=C(CH3)PhY) with p-toluenesulfonic acid (TsOH) via β-C−H scission. They were subsequently used as reversible chain transfer agents for sulfur-free cationic RAFT polymerization of αMS via β-C−C scission in the presence of Lewis acid catalysts such as SnCl4. In particular, exo-olefin compounds with electron-donating substituents, such as a 4-MeO group (Y) on the aromatic ring, worked as efficient cationic RAFT agents for αMS to produce poly(αMS) with controlled molecular weights and exo-olefin terminals. Other exo-olefin compounds (R−CH2C(=CH2)(4-MeOPh)) with various R groups were prepared by different methods to examine the effects of R groups on the cationic RAFT polymerization. A sulfur-free cationic RAFT polymerization also proceeded for isobutylene (IB) with the exo-olefin αMS dimer ((CH3)2C(Ph)−CH2C(=CH2)Ph). Furthermore, telechelic poly(IB) with exo-olefins at both terminals was obtained with a bifunctional RAFT agent containing two exo-olefins. Finally, block copolymers of αMS and methyl methacrylate (MMA) were prepared via mechanistic transformation from cationic to radical RAFT polymerization using exo-olefin terminals containing 4-MeOPh groups as common sulfur-free RAFT groups for both cationic and radical polymerizations.  相似文献   

6.
The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′-bis(pyridine-2-ylmethyl)-2,2′-bipyrrolidine). Cyclohexane, adamantane, 1-bromo-3,7-dimethyloctane, 3,7-dimethyloctyl acetate, (−)-acetoxy-p-menthane, and cis-1,2-dimethylcyclohexane were used as substrates. The studied catalyst systems generate low-spin (S=1/2) oxoiron(V) intermediates or high-spin (S=3/2) oxoiron(V) intermediates, depending on the electron-donating ability of remote substituents at the pyridine rings. The low-spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high-spin congeners, according to the measured self-decay and second-order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo- and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low-spin perferryl intermediates to those with their less reactive high-spin congeners.  相似文献   

7.
Selective functionalization of non-activated C(sp3)−H bonds is a major challenge in chemistry, so functional groups are often used to enhance reactivity. Here, we present a gold(I)-catalyzed C(sp3)−H activation of 1-bromoalkynes without any sort of electronic, or conformational bias. The reaction proceeds regiospecifically and stereospecifically to the corresponding bromocyclopentene derivatives. The latter can be readily modified, comprising an excellent library of diverse 3D scaffolds for medicinal chemistry. In addition, a mechanistic study has shown that the reaction proceeds via a so far unknown mechanism: a concerted [1,5]-H shift / C−C bond formation involving a gold-stabilized vinylcation-like transition state.  相似文献   

8.
Multiple steps are needed to achieve the C−H functional of aromatic aldehyde, since the C−H functional reaction usually occurs preferentially at the aldehydic C−H bond over the aryl C−H bond. We report an efficient azidation method mediated by dirhodium(II) catalysts to achieve the direct aryl azidation of aromatic aldehydes avoiding the simultaneous use of protected aldehydes and prefunctionalized arenes. The regioselectivity of this method is similar to those of typical aromatic electrophilic substitution reactions. The resulting azidobenzaldehyde products are versatile building blocks or precursors for the synthesis of many biologically active compounds. The mechanism studies indicate that the one-electron oxidative intermediate Rh2(II,III)N3 is responsible for the azide transfer.  相似文献   

9.
Herein, we disclose a recyclable, hybrid manganese catalyst for site-selective azine C−H activation by weak amide assistance. The novel, reusable catalyst enabled C3–H arylation and C3–H alkylation with ample scope, and was characterized by detailed transmission electron microscopy analysis.  相似文献   

10.
Thiostrepton is a potent antibiotic against a broad range of Gram-positive bacteria, but its medical applications have been limited by its poor aqueous solubility. In this work, the first C(sp2)−H amidation of dehydroalanine (Dha) residues was applied to the site selective modification of thiostrepton to prepare a variety of derivatives. Unlike all prior methods for the modification of thiostrepton, the alkene framework of the Dha residue is preserved and with complete selectivity for the Z-stereoisomer. Additionally, an aldehyde group was introduced by C−H amidation, enabling oxime ligation for the installation of an even greater range of functionality. The thiostrepton derivatives generally maintain antimicrobial activity, and importantly, eight of the derivatives displayed improved aqueous solubility (up to 28-fold), thereby addressing a key shortcoming of this antibiotic. The exceptional functional group compatibility and site selectivity of CoIII-catalyzed C(sp2)−H Dha amidation suggests that this approach could be generalized to other natural products and biopolymers containing Dha residues.  相似文献   

11.
Perfluoroalkylated (hetero)arenes represent an extremely important family of molecules commonly utilized in many areas such as medicinal chemistry, agrochemistry and material sciences. Due to their unique properties, they have attracted significant interest from synthetic chemists and various methods have been developed for their synthesis. Among them, the direct perfluoroalkylation of C(sp2)−H bonds in (hetero)arenes is one of the most attractive and straightforward ones, provided that it proceeds with high levels of regioselectivity. In this review article, a comprehensive overview of advances in this field is presented, with a special focus on the reaction mechanisms involved in these transformations and their regioselectivity. All methods available have been classified according to the nature of the perfluoroalkyl chain introduced, trifluoromethylation reactions being overviewed in a separate section, and to the nature of the reagents/catalysts required.  相似文献   

12.
The electrophilic iron–carbene chelate complexes 1 and 2 react with alkoxides RO to give the neutral chelate complex 3 and the carbene complex 4 , respectively. Depending on the nature of the chelating ortho substituent, selective activation of the Ar–Cl or Ar–C bond occurs; these processes are promoted by the chelation.  相似文献   

13.
An unprecedented method that makes use of the cooperative interplay between molecular iodine and photoredox catalysis has been developed for dual light-activated intramolecular benzylic C−H amination. Iodine serves as the catalyst for the formation of a new C−N bond by activating a remote C −H bond (1,5-HAT process) under visible-light irradiation while the organic photoredox catalyst TPT effects the reoxidation of the molecular iodine catalyst. To explain the compatibility of the two involved photochemical steps, the key N−I bond activation was elucidated by computational methods. The new cooperative catalysis has important implications for the combination of non-metallic main-group catalysis with photocatalysis.  相似文献   

14.
We report herein the design and development of Co/Al and Co/Mg bimetallic catalysts, supported by a phosphine/secondary phosphine oxide (PSPO) bifunctional ligand, for the site-selective C−H alkenylation of nitrogen-containing heteroarenes with alkynes. These catalysts enable the alkenylation of pyridine, pyridone, and imidazo[1,2-a]pyridine derivatives at the C−H site proximal to the Lewis basic nitrogen or oxygen atom, which represents a selectivity profile distinct from that of the previously developed cobalt-diphosphine/aluminum catalyst. The alkenylated products were obtained in moderate to good yields using various heterocycles and differently substituted internal alkynes. Kinetic isotope effect experiments suggest the irreversibility of the C−H activation step, the relevance of which to the rate-limiting step depends on the reaction conditions. Density functional theory calculations indicate that ligand-to-ligand hydrogen transfer is the common mechanism of C−H activation.  相似文献   

15.
N−O σ bonds containing compounds are versatile substrates for organic synthesis under transition metal catalysis. Their ability to react through both polar (oxidative addition, formation of metallanitrene, nucleophilic substitution) and radical pathways (single electron transfer, homolytic bond scission) have triggered the development of various synthetic methodologies, particularly toward synthesizing nitrogen-containing compounds. In this review, we discuss the different modes of activation of N−O bonds in the presence of transition metal catalysts, emphasizing the experimental and computational mechanistic proofs in the literature to help to design new synthetic pathways toward the synthesis of C−N bonds.  相似文献   

16.
Propylene gas is produced worldwide by steam cracking on million-metric-ton scale per year. It serves as a valuable starting material for π-bond functionalization but is rarely applied in transition metal-catalyzed allylic C−H functionalization for fine chemical synthesis. Herein, we report that a newly-developed cationic cyclopentadienyliron dicarbonyl complex allows for the conversion of propylene to its allylic C−C bond coupling products under catalytic conditions. This approach was also found applicable to the allylic functionalization of simple α-olefins with distinctive branched selectivity. Experimental and computational mechanistic studies supported the allylic deprotonation of the metal-coordinated alkene as the turnover-limiting step and led to insights into the multifaceted roles of the newly designed ligand in promoting allylic C−H functionalization with enhanced reactivity and stereoselectivity.  相似文献   

17.
The unprecedented Pd-catalyzed (ethoxycarbonyl)difluoromethylthiolation reaction of various unsaturated derivatives was studied. In the presence of the (ethoxycarbonyl)difluoromethylsulfenamide reagent I and under mild reaction conditions (60 °C), both 2-(hetero)aryl and 2-(α-aryl-vinyl)pyridine derivatives were smoothly functionalized with this methodology (37 examples, up to 87 % yield). Moreover, the synthetic interest of this fluorinated moiety was further showcased by its conversion into various original fluorinated residues. Finally, a plausible mechanism for this transformation was suggested.  相似文献   

18.
Ascorbate (H2A) is a well-known antioxidant to protect cellular components from free radical damage and has also emerged as a pro-oxidant in cancer therapies. However, such “contradictory” mechanisms underlying H2A oxidation are not well understood. Herein, we report Fe leaching during catalytic H2A oxidation using an Fe−N−C nanozyme as a ferritin mimic and its influence on the selectivity of the oxygen reduction reaction (ORR). Owing to the heterogeneity, the Fe-Nx sites in Fe−N−C primarily catalyzed H2A oxidation and 4 e ORR via an iron-oxo intermediate. Nonetheless, trace O2 produced by marginal N−C sites through 2 e ORR accumulated and attacked Fe-Nx sites, leading to the linear leakage of unstable Fe ions up to 420 ppb when the H2A concentration increased to 2 mM. As a result, a substantial fraction (ca. 40 %) of the N−C sites on Fe−N−C were activated, and a new 2+2 e ORR path was finally enabled, along with Fenton-type H2A oxidation. Consequently, after Fe ions diffused into the bulk solution, the ORR at the N−C sites stopped at H2O2 production, which was the origin of the pro-oxidant effect of H2A.  相似文献   

19.
Selective bioconjugation remains a significant challenge for the synthetic chemist due to the stringent reaction conditions required by biomolecules coupled with their high degree of functionality. The current trailblazer of transition-metal mediated bioconjugation chemistry involves the use of Pd(II) complexes prepared via an oxidative addition process. Herein, the preparation of Pd(II) complexes for cysteine bioconjugation via a facile C−H activation process is reported. These complexes show bioconjugation efficiency competitive with what is seen in the current literature, with a user-friendly synthesis, common Pd(II) sources, and a more cost-effective ligand. Furthermore, these complexes need not be isolated, and still achieve high conversion efficiency and selectivity of a model peptide. These complexes also demonstrate the ability to selectively arylate a single surface cysteine residue on a model protein substrate, further demonstrating their utility.  相似文献   

20.
The ability to construct C(sp3)−C(sp3) bonds from easily accessible reagents is a crucial, yet challenging endeavor for synthetic organic chemists. Herein, we report the realization of such a cross-coupling reaction, which combines N-sulfonyl hydrazones and C(sp3)−H donors through a diarylketone-enabled photocatalytic hydrogen atom transfer and a subsequent fragmentation of the obtained alkylated hydrazide. This mild and metal-free protocol was employed to prepare a wide array of alkyl-alkyl cross-coupled products and is tolerant of a variety of functional groups. The application of this chemistry further provides a preparatively useful route to various medicinally-relevant compounds, such as homobenzylic ethers, aryl ethyl amines, β-amino acids and other moieties which are commonly encountered in approved pharmaceuticals, agrochemicals and natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号