首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Liquid chromatography–ion trap mass spectrometry was employed to investigate the metabolism of linarin in rats. Identification and structural elucidation of the metabolites were performed by comparing the differences in molecular masses, retention times, and full scan MS n spectra between linarin and its metabolites. Six metabolites (acacetin, apigenin, acacetin glucuronide, apigenin glucuronide, acacetin sulfate, apigenin sulfate) were detected in rat urine after oral administration of linarin at the dose of 50 mg kg?1. Furthermore, a selective and sensitive liquid chromatography–triple quadruple mass spectrometry assay was developed and validated for the simultaneous determination of linarin and acacetin (the major metabolite of linarin) in rat urine. Chromatographic separation was carried out on a C18 column, and mass spectrometric detection was performed using a triple-quadrupole mass spectrometer coupled with an electrospray ionization source in the positive ion mode. Quantitation of linarin and acacetin was performed using selected reaction monitoring of precursor–product ion transitions at m/z 593 → 285 for linarin, 285 → 242 for acacetin, and 303 → 153 for hesperitin (internal standard), respectively. The assay exhibited good linearity (r > 0.9900) for both linarin and acacetin. The intra- and inter-day precisions were <13.4 % and the accuracy was between ?8.1 and 3.1 %. The method was successfully applied to the urinary excretion study of linarin in rats after oral administration of linarin.  相似文献   

3.
Cui  Li  Xu  Fengjuan  Jiang  Jun  Sun  E.  Zhang  Zhenhai  Cheng  Xudong  Wang  Jing  Jia  Xiaobin 《Chromatographia》2014,77(17):1223-1234

Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.

  相似文献   

4.
Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.  相似文献   

5.
SHR110008 is a representative 9-β-dihydro-9,10-O-acetal taxane with greater anticancer activity and less toxicity than docetaxel. To support a preclinical study of its pharmacokinetics and to predict the effect of 9-β-dihydro-9,10-O-acetal modification on its pharmacokinetic properties, we have developed a sensitive and rapid liquid chromatographic–tandem mass spectrometric method for quantitative analysis of SHR110008 in rat and dog plasma. Plasma was extracted with ethyl acetate. The analytes were separated on a 150 × 4.6 mm i.d., 5 μm particle, reversed-phase C18 column with 90:10 (v/v) methanol–0.1% formic acid as mobile phase at a flow rate of 0.3 mL min?1. Detection was performed by triple-quadrupole tandem mass spectrometry in selected reaction monitoring (SRM) mode with an electrospray ionization source. The precursor-to-product ion transition m/z 933 → 142 was used. The method was validated for accuracy and precision, and linearity in the two matrices was good. Lower limits of quantification (LLOQ) in rat and dog plasma were 5 and 2 ng mL?1, respectively. There were no stability-related problems in the procedure for analysis of SHR110008. The method was successfully used in a preclinical study of the pharmacokinetics of SHR110008 in rats and beagle dogs. The pharmacokinetics of SHR110008 were non-linear in rats and dogs. The elimination half-life ranged from 5.18 to 7.32 h for the rats and from 6.42 to 8.42 h for the dogs.  相似文献   

6.
A rapid method was developed for the determination of pentachloronitrobenzene (PCNB) and its metabolites pentachloroaniline, pentachlorothioanisole residues in ginseng. Extraction and clean-up were carried out in a single step and analysis was accomplished by gas chromatography–mass spectrometry with multiple reaction monitoring. The main parameters affecting extraction yield and selectivity, such as type and amount of dispersant material, clean-up co-sorbent and extraction solvent were evaluated. The best results were obtained using 1 g ginseng, 2 g florisil as dispersant sorbent, 0.5 g neutral alumina as clean-up co-sorbent, and subsequent extraction with 10 mL acetone–n-hexane (5:5, v/v) with assisted sonication and repeated with another 5 mL of the same solvent mixture. The method was validated by analysis of ginseng samples fortified at different concentration levels (0.01–0.10 mg kg?1). Average recoveries (n = 5) ranged from 85 to 95% with relative standard deviation between 2.5 and 11.2%. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. The detection limits ranged from 0.2 to 0.9 µg kg?1 in ginseng. The method was applied to the analysis of PCNB and its metabolite residues in commercial ginseng samples.  相似文献   

7.
Wieder  M. E.  Gray  B. P.  Brown  P. R.  Hudson  S.  Pearce  C. M.  Paine  S. W.  Hillyer  L. 《Chromatographia》2012,75(11):635-643

Acepromazine maleate (Sedalin®) was administered orally to six thoroughbred horses at a dose of 0.15 mg kg−1. Urine and blood samples were collected up to 412 h post-administration. Plasma and urine were hydrolysed; plasma samples were then processed using liquid–liquid extraction and urine samples using solid-phase extraction. A sensitive tandem mass spectrometric method was developed in this study, achieving a lower limit of quantification for acepromazine of 10 pg mL−1 in plasma and 100 pg mL−1 in urine. Acepromazine, hydroxyethylpromazine, hydroxyacepromazine, hydroxyethylpromazine sulphoxide, hydroxyethylhydroxypromazine, dihydroxyacepromazine and dihydroxyhydroxyethylpromazine were detected in the post-administration samples. The parent drug and its metabolites were identified using a combination of UPLC–MS/MS and accurate mass measurement. Separation of the structural isomers hydroxyethylpromazine sulphoxide and hydroxyethylhydroxypromazine was another significant outcome of this work and demonstrated the advantages to be gained from investing in chromatographic method development.

  相似文献   

8.
Acepromazine maleate (Sedalin?) was administered orally to six thoroughbred horses at a dose of 0.15?mg?kg?1. Urine and blood samples were collected up to 412?h post-administration. Plasma and urine were hydrolysed; plasma samples were then processed using liquid–liquid extraction and urine samples using solid-phase extraction. A sensitive tandem mass spectrometric method was developed in this study, achieving a lower limit of quantification for acepromazine of 10?pg?mL?1 in plasma and 100?pg?mL?1 in urine. Acepromazine, hydroxyethylpromazine, hydroxyacepromazine, hydroxyethylpromazine sulphoxide, hydroxyethylhydroxypromazine, dihydroxyacepromazine and dihydroxyhydroxyethylpromazine were detected in the post-administration samples. The parent drug and its metabolites were identified using a combination of UPLC–MS/MS and accurate mass measurement. Separation of the structural isomers hydroxyethylpromazine sulphoxide and hydroxyethylhydroxypromazine was another significant outcome of this work and demonstrated the advantages to be gained from investing in chromatographic method development.  相似文献   

9.
10.
A rapid and sensitive LC–MS–MS method was developed and validated for the determination of asiaticoside in rat plasma. Asiaticoside was extracted by protein precipitation with acetonitrile, and separated on a C18 column. The total analytical time was relatively short (4 min), and the limit of quantification was 38 ng mL?1 using 100 μL of rat plasma. Asiaticoside and the internal standard (felodipine) were monitored in the multi-reaction-monitoring mode as follows: m/z 957.4 → 469.3 and m/z 382.2 → 145.1, respectively. Calibration was linear over a concentration range from 38 to 7,600 ng mL?1, and the correlation coefficient was greater than 0.998. The recoveries of asiaticoside from plasma were better than 85%, and RSDs of inter-day and intra-day assays were below 10.1%. The method is sensitive and specific, and suitable for pharmacokinetic studies of asiaticoside in rats.  相似文献   

11.
12.
Li  Zhixiong  Song  Xinmeng  Fu  Zhiwen  Wu  Bin  Ling  Yun  Sun  Zhaolin  Chen  Mingcang  Xu  Desheng  Huang  Chenggang 《Chromatographia》2013,76(13):767-780

The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.

  相似文献   

13.
The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.  相似文献   

14.
Almonertinib was included in the first-line treatment of non-small cell lung cancer with EGFR T790M mutations by the Chinese Society of Clinical Oncology in 2021. Considering that immunocompromised lung cancer patients are prone to opportunistic fungal infections, and most triazole antifungal drugs are moderate or strong inhibitors of CYP3A4, this study was conducted to develop and validate an accurate and rapid ultra-performance liquid chromatography tandem mass spectrometry method for quantifying almonertinib in plasma and for investigating the pharmacokinetic changes of almonertinib caused by voriconazole and fluconazole in rats. After liquid–liquid extraction with tert-butyl methyl ether, an XSelect HSS T3 column (2.1 × 100 mm, 2.5 μm, Waters) was used for the chromatographic separation of almonertinib and sorafenib-D3 (internal standard). The analytes were detected using an AB Sciex Triple Quad 5,500 mass spectrometer in the positive ionization mode. The method exhibited great linearity (0.5–200 ng/ml, r > 0.997) and stability under the established experimental conditions. All validation experiments were in accordance with the guidelines, and the results were all within the acceptable limits. This method was successfully applied to the researches of pharmacokinetics and drug interactions for almonertinib in rats. Voriconazole and fluconazole significantly altered the pharmacokinetic profiles of almonertinib and increased the systemic exposure of almonertinib in rats to different degrees, but further human trials should be conducted to validate the results.  相似文献   

15.
Amoxicillin (AMOX) metabolism in human liver microsomes was studied in vitro using liquid chromatography–mass spectrometry (LC/MS). Amoxicillin was incubated with human liver microsomes along with NADPH, and the reaction mixture was analyzed by LC/MS to obtain the specific metabolic profile of the studied antibiotic drug. Positive electrospray ionization was employed as the ionization source. An ACE C18-column (4.6 mm × 150 mm, 3 μm) was implemented with acetonitrile and water (+0.1 % formic acid) in isocratic mode as the mobile phase at the flow 0.4 mL min?1. The chemical structures of metabolites were proposed on the basis of the accurate mass measurement of the protonated molecule as well as their main product. Six phase I and one phase II metabolites were detected and structurally described. The metabolism of AMOX occurred via oxidation, hydroxylation and oxidative deamination, as well as through combination of these reactions. Compound M7, with glucuronic acid was also observed as phase II metabolite. Neither sulfate nor glutathione conjugates were detected. This study presents novel information about the chemical structure of the potential AMOX metabolites and provides vital data for further pharmacokinetic and in vivo metabolism studies.  相似文献   

16.
A comprehensive survey of matrix effects on the LC–MS/MS analysis of the banned antibiotic growth promoters carbadox and olaquindox in feed was carried out. Various factors of sample preparation procedure and measurement were systematically investigated by pre- and post-extraction addition and postcolumn infusion experiments. In general, strong signal suppression up to 70 % for carbadox and up to 90 % for olaquindox was observed when using different extraction solvents and techniques as well as different chromatographic conditions. Reduction of matrix effects was achieved by SPE clean-up and dilution of sample extracts. Nevertheless, matrix effect profiles determined by postcolumn infusion revealed, that reduction of signal suppression at a respective retention time cannot guarantee improvement of the methods performance. If high variability of matrix effects is present along the chromatographic run, accuracy might decrease despite reduced signal suppression. Besides method parameters, different feedingstuffs were investigated and showed similar matrix effects.  相似文献   

17.

A comprehensive survey of matrix effects on the LC–MS/MS analysis of the banned antibiotic growth promoters carbadox and olaquindox in feed was carried out. Various factors of sample preparation procedure and measurement were systematically investigated by pre- and post-extraction addition and postcolumn infusion experiments. In general, strong signal suppression up to 70 % for carbadox and up to 90 % for olaquindox was observed when using different extraction solvents and techniques as well as different chromatographic conditions. Reduction of matrix effects was achieved by SPE clean-up and dilution of sample extracts. Nevertheless, matrix effect profiles determined by postcolumn infusion revealed, that reduction of signal suppression at a respective retention time cannot guarantee improvement of the methods performance. If high variability of matrix effects is present along the chromatographic run, accuracy might decrease despite reduced signal suppression. Besides method parameters, different feedingstuffs were investigated and showed similar matrix effects.

  相似文献   

18.
A liquid chromatography–electrospray ionization tandem mass spectrometry method has been developed to perform the determination of 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA) and their metabolites, i.e., 5-hydroxyindole-3-acetic acid (5-HIAA), 4-hydroxy-3-methoxyphenylglycol (MHPG) sulfate, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in rat brain tissue. Analytes were separated on a Thermo C18 column (4.6 mm × 250 mm, 5 μm, SN: 1245575T, Thermo electron corporation, USA) with a mobile phase of 0.05% formic acid/acetonitrile (92:8 for ESI+, 82:18 for ESI?, v/v) at the flow-rate of 0.8 mL min?1. The LC system was coupled to a Waters Micromass Quattro Premier XE tandem quadruple mass spectrometer. MS acquisition of 5-HT, NE and DA was performed in positive electrospray ionization multiple reaction monitoring (MRM) mode, while negative electrospray ionization MRM mode was used to monitor their metabolites. The calibration curves were linear within the concentration range of 4–4,450 ng mL?1 for 5-HT, 4–4,110 ng mL?1 for NE and 4–4,100 ng mL?1 for DA (≥ 0.999). The limit of quantitation was 4 ng mL?1. 5-HIAA, MHPG, DOPAC and HVA have good linearity within the range of 12–1,000 ng mL?1(≥ 0.998) and the limit of quantitation was 12 ng mL?1. The intra- and inter-day RSD were lower than 8.45%. The method is sensitive, fast, accurate and usable for quantity determination of monoamine neurotransmitters and their metabolites in neuropsychiatric diseases.  相似文献   

19.
A sensitive, rapid and reproducible LC–MS/MS method for the determination of olmesartan (OLM), amlodipine (ALM) and hydrochlorothiazide (HCZ) in rat plasma and urine has been developed and validated. Irbesartan (IRB) was used as an internal standard. The analytes were separated on a Waters XTerra-C18 column using gradient elution with acetonitrile and 10 mM ammonium acetate buffer (pH 3.5, adjusted with acetic acid) at a flow rate of 1.0 mL min?1. The three analytes were ionized by positive ion electrospray using multiple-reaction monitoring (MRM) mode to monitor precursor?→?product ion transitions m/z 447.31?→?234.97 for OLM, 408.87?→?238.18 for AML and 290.1?→?204.85 for HCZ. The specificity, matrix effect, recovery, sensitivity, linearity, accuracy, precision, and stabilities were all validated over the concentration range 0.4–100 ng mL?1 for AML, 0.2–100 ng mL?1 for OLM, 0.1–100 ng mL?1 for HCZ. The mean concentrations (Cmax) are 10.32, 587, and 3.4 for OLM, ALM, and HCZ, respectively, by the oral administration of 15 mg kg?1 of each analyte.  相似文献   

20.
Ten highly potent estrogens including estrone (E1), 17β-estradiol (E2), estriol (E3), 4-hydroxyestrone (4-OHE1), 2-hydroxyestradiol (2-OHE2), 16α-hydroxyestrone (16α-OHE1), 2-methoxyestrone (2-MeO-E1), 2-methoxyestradiol (2-MeO-E2), diethylstilbestrol (DES), 17α-ethynylestradiol (EE2) were identified and quantified by solid-phase extraction followed by liquid chromatography–mass spectrometry. An improved two-step SPE process was employed in this work. C18 cartridge was used for both enrichment of all target estrogens and retention of some nonpolar impurities, and then a polar florisil cartridge was subsequently used to separate the interested estrogens from the polar impurities. After this pretreatment for water samples, the results showed clean chromatograms without interference from matrix effects. Besides, this method was accurate (recovery percentages between 70.4 and 106.8% for river water and 73.4 and 101.3% for raw sewage, except 4-OHE1 and 2-OHE2), and precise (RSD varying between 1.3 and 17.8% for river water and 3.4 and 16.7% for raw sewage). In the optimized condition, this method was used to verify the presence of the target analytes in the Qinghe River and influent of sewage treatment plant in the northwest of Beijing, China. Some estrogens were detected in the river water and sewage water samples at a relatively high concentration. The developed method proved to be effective for analyzing estrogen compounds in complex matrices. Moreover, the achieved results demonstrated that a great concern should be addressed to the potential risk of the presence of estrogens in the aquatic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号