首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
本文将概述窄线SeyfertⅠ型星系 (包括具有类似性质但光度较大的类星体 )的主要观测特征、物理内涵及其理论解释和在活动星系核内部结构上的反映。窄线SeyfertⅠ型星系 (NLS1 ,以后NLS1都认为包括NLSI星系和NLS1类星体 )具有窄的允许线Hβ,它兼有Sy1和Sy2的某些特征。它具有强的FeⅡ光学线和弱的 [OⅢ ]λ5 0 0 7禁线 ,这明显不同于Sy2。在观测相关量的主成分统计分析中表明NLS1是活动星系核第一主向量表现为极端的一类。这包括 :( 1 )HβFWHM取极小 ;( 2 )FeⅡλ45 70 /Hβ 取极大 ;( 3)SⅢ ]λ1 892 /CⅢ ]λ1 90 9取极大 ,亦一定范围内宽线区电子密度取大值 ;( 4 )CⅣλ1 5 4 9线中心蓝移取极大 ;( 5 )高光度NLS1的软X射线光子数谱指数Γx 取极大 ;( 6)X射线相对流量变化方差最大等。基于以上观测结构和相应统计规律 (观测量与HβFWHM的关系 ) ,解释NLS1现象最佳的模型是高相对吸积率L/LEdd模型。NLS1比之典型宽线活动星系核具有较低的中心黑洞质量MBH。进一步 ,还发现这一模型是活动星系核主...  相似文献   

2.

For black hole binaries (BHBs) and active galactic nuclei (AGNs), bifurcation timescales (BTs) Δt b exist, below which time-domain power is significantly higher than the corresponding Fourier power. Quasi-periodic oscillations (QPOs) are removed from the Fourier spectra of BHBs. A relationship between BT, black hole mass and bolometric luminosity is derived. Strong anti-correlation between BT and luminosity of Cyg X-1 is found. After removing the QPOs, BTs are also obtained for two ultraluminous X-ray sources (ULXs), M82 X-1 and NGC5408 X-1. The results support that they harbor intermediate mass black holes (IMBHs).

  相似文献   

3.
A fundamental role is attributed to supermassive black holes (SMBH), and the feedback they generate, in the evolution of galaxies. But theoretical models trying to reproduce the MSMBH vs. sigma relation (between the SMBH mass and stellar velocity dispersion of the galaxy bulge) make broad assumptions about the physical processes involved. These assumptions are needed due to the scarcity of observational constraints on the relevant physical processes which occur when the SMBH is being fed via mass accretion in active galactic nuclei (AGN). In search for these constraints, our group—AGN integral field spectroscopy (AGNIFS)—has been mapping the gas kinematics as well as the stellar population properties of the inner few hundred parsecs of a sample of nearby AGN hosts. In this contribution, I report on results obtained so far which show gas inflows along nuclear spirals and compact disks in the inner tens to hundreds of pc in nearby AGN hosts which seem to be the sources of fuel to the AGN. As the inflow rates are much larger than the AGN accretion rate, the excess gas must be depleted via formation of new stars in the bulge. Indeed, in many cases, we find ~100 pc circumnuclear rings of recent star formation (ages ~10–500 Myr) that can be interpreted as a signature of coevolution of the host galaxy and its AGN. I also report on the mapping of outflows in ionized gas, which are ubiquitous in Seyfert galaxies, and discuss mass outflow rates and powers.  相似文献   

4.
A new mechanism describing the formation of protogalaxies is proposed, based on the second-order phase transition in the inflation stage and the domain wall formation upon the end of inflation. The presence of closed domain walls with the size markedly exceeding the cosmological horizon at the instant of their formation and the wall collapse in the postinflation epoch (when the wall size becomes comparable with the cosmological horizon) lead to the formation of massive black hole clusters that can serve as nuclei for the future galaxies. The black hole mass distributions obtained do not contradict the available experimental data. The number of black holes with M ~ 100 solar masses (M ) and above is comparable with the number of galaxies in the visible Universe. Development of the proposed approach gives grounds for a principally new scenario of galaxy formation in the model of a hot Universe.  相似文献   

5.

The thermodynamics and the weak cosmic censorship conjecture (WCCC) in a high dimensional RN ? AdSd+?1 black hole with energy-momentum relation are investigated by absorbing a charged particle in the phase space. In the RN ? AdSd+?1 space-time, the cosmological constant Λ is treated as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume. We use the energy-momentum relation of the absorbed particle to discuss the thermodynamics of the RN ? AdSd+?1 black hole and to prove the WCCC in the phase space. Based on this assumption, we find that the first law and the second law of thermodynamics are satisfied in normal phase space. On the other hand, in the extend phase space, the first law is satisfied and the second law is violated. Then we study the WCCC in the phase space, we find that the WCCC is satisfied for an extreme black and a near-extreme black hole in the normal phase space. In the extend phase space, the WCCC is satisfied for an extreme black hole and unidentified for a near-extreme black hole.

  相似文献   

6.

For a sample of 185 flat-spectrum radio quasars (FSRQs) constructed from the SDSS DR3 quasar catalog, we found a significant correlation between the synchrotron peak luminosity and both the black hole mass and Eddington ratio. This implies that the physics of its jet formation is not only tightly related with the black hole mass, but also with the accretion rate. We verify that the synchrotron peak luminosity can be a better indicator of jet emission than 5 GHz luminosity, through comparing the relationships between each of these two parameters and both black hole mass and Eddington ratio. The fundamental plane of black hole activity for our FSRQs is established as L rL 0.80±0.06x M −0.04±0.09bh with a weak dependence on black hole mass, however, the scatter is significant.

  相似文献   

7.
Spenta R Wadia 《Pramana》2001,56(1):1-46
We review the theory of the microscopic modeling of the 5-dim. black hole of type HB string theory in terms of the D 1D 5 brane system. A detailed discussion of the low energy effective Lagrangian of the brane system is presented and the black hole micro-states are identified. These considerations are valid in the strong coupling regime of supergravity due to the non-renormalization of the low energy dynamics in this model. Using Maldacena duality and standard statistical mechanics methods one can account for black hole thermodynamics and calculate the absorption cross section and the Hawking radiation rates. Hence, at least in the case of this model black hole, since we can account for black hole properties within a unitary theory, there is no information paradox.  相似文献   

8.
The simplest possible equation for Hawking radiation and other black hole radiated power is derived in terms of black hole density, ρ . Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy S bh∝ (kAc 3)/ℏ G. Variations of S bh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius R H, p = which is similar tothe Compton wavelength relation.  相似文献   

9.
A nontrivial scalar field configuration of vanishing energy-momentum is reported. These matter configurations have no influence on the metric and therefore they are not be “detected" gravitationally. This phenomenon occurs for a time–dependent nonminimally coupled and self-interacting scalar field on the 2+1 (BTZ) black hole geometry. We conclude that such stealth configurations exist for the static 2+1 black hole for any value of the nonminimal coupling parameter ζ≠0 with a fixed self-interaction potential U ζ(Φ). For the range 0 < ζ≤1/2 potentials are bounded from below and for the range 0 < ζ < 1/4 the stealth field falls into the black hole and is swallowed by it at an exponential rate, without any consequence for the black hole.  相似文献   

10.
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature TH. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1. Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.  相似文献   

11.

Recent studies of black hole and neutron star low mass X-ray binaries (LMXBs) show a positive correlation between the X-ray flux at which the low/hard(LH)-to-high/soft(HS) state transition occurs and the peak flux of the following HS state. By analyzing the data from the All Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE), we show that the HS state flux after the source reaches its HS flux peak still correlates with the transition flux during soft X-ray transient (SXT) outbursts. By studying large outbursts or flares of GX 339-4, Aql X-1 and 4U 1705-44, we have found that the correlation holds up to 250, 40, and 50 d after the LH-to-HS state transition, respectively. These time scales correspond to the viscous time scale in a standard accretion disk around a stellar mass black hole or a neutron star at a radius of ∼104–5 R g, indicating that the mass accretion rates in the accretion flow either correlate over a large range of radii at a given time or correlate over a long period of time at a given radius. If the accretion geometry is a two-flow geometry composed of a sub-Keplerian inflow or outflow and a disk flow in the LH state, the disk flow with a radius up to ∼105 R g would have contributed to the nearly instantaneous non-thermal radiation directly or indirectly, and therefore affects the time when the state transition occurs.

  相似文献   

12.
We calculate the effective Komar angular momentum for the Kerr-Newman (KN) black hole. This result is valid at any radial distance on and outside the black hole event horizon. The effective values of mass and angular momentum are then used to derive an identity (Kcm=2STK_{\chi^{\mu}}=2ST) which relates the Komar conserved charge (KcmK_{\chi^{\mu}}) corresponding to the null Killing vector (χ μ ) with the thermodynamic quantities of this black hole. As an application of this identity the generalised Smarr formula for this black hole is derived. This establishes the fact that the above identity is a local form of the inherently non-local generalised Smarr formula.  相似文献   

13.
Subrahmanyan Chandrasekhar (Chandra) was just eight years old when the first astrophysical jet was discovered in M87. Since then, jets have been uncovered with a wide variety of sources including accretion disks orbiting stellar and massive black holes, neutron stars, isolated pulsars, γ-ray bursts, protostars and planetary nebulae. This talk will be primarily concerned with collimated hydromagnetic outflows associated with spinning, massive black holes in active galactic nuclei. Jets exhibit physical processes central to three of the major research themes in Chandrasekhar’s research career – radiative transfer, magnetohydrodynamics and black holes. Relativistic jets can be thought of as ‘exhausts’ from both the hole and its orbiting accretion disk, carrying away the energy liberated by the rotating spacetime and the accreting gas that is not radiated. However, no aspect of jet formation, propagation and radiation can be regarded as understood in detail. The combination of new γ-ray, radio and optical observations together with impressive advances in numerical simulation make this a good time to settle some long-standing debates.  相似文献   

14.
Gravitational waves (GW) emitted by merging black holes (BH) and neutron stars are now routinely detected. Those are the afterlives of massive stars that formed all across the Universe—at different cosmic times and with different metallicities. Birth metallicity plays an important role in the evolution of massive stars. Consequently, the population properties of mergers are sensitive to the metallicity dependent cosmic star formation history (fSFR(Z,z)). In particular, within the isolated formation scenarios (the focus of this paper), a strong low metallicity preference of the formation of BH mergers is found. The origin of this dependence and its consequences are discussed. Most importantly, uncertainty in the fSFR(Z,z) (substantial even at low redshifts) cannot be ignored in the models. This poses a challenge for the interpretation of the observed GW source population properties. Possible improvements and the role of future GW detectors are considered. Recent efforts to determine fSFR(Z,z) and the factors that dominate its uncertainty are summarized. Many of those factors stem from the uncertain properties of faint and distant galaxies. The fact that they leave imprint on the redshift-dependent properties of mergers makes GW a promising (and complementary to electromagnetic observations) tool to study galaxy chemical evolution.  相似文献   

15.
We find solution to the metric function f(r) = 0 of charged BTZ black hole making use of the Lambert function. The condition of extremal charged BTZ black hole is determined by a non-linear relation of M e (Q) = Q 2(1 − ln Q 2). Then, we study the entropy of extremal charged BTZ black hole using the entropy function approach. It is shown that this formalism works with a proper normalization of charge Q for charged BTZ black hole because AdS2 × S1 represents near-horizon geometry of the extremal charged BTZ black hole. Finally, we introduce the Wald’s Noether formalism to reproduce the entropy of the extremal charged BTZ black hole without normalization when using the dilaton gravity approach.  相似文献   

16.
Kerr-Newman黑洞的熵修正   总被引:1,自引:0,他引:1       下载免费PDF全文
曾晓雄 《物理学报》2010,59(1):92-96
基于Majhi等人最近的工作,利用狄拉克方程,在半经典近似外讨论了Kerr-Newman黑洞的熵修正.在单位制G=c=kB=1下,由于普朗克常数与普朗克长度,普朗克质量和普朗克电荷的平方成正比,作用量的量子修正项与半经典项的比例常数被选为(Mrh-Q2/2)-1.结合视界方程的微分形式和黑洞热力学第一定律,本文得到了荷电稳态黑洞的修正熵并发现修正项同样包括Bekenstein-Hawking熵的对数项和倒数项.  相似文献   

17.
We look for possible nonsupersymmetric black hole attractor solutions for type II compactification on (the mirror of) CY3(2,128) expressed as a degree‐12 hypersurface in WCP 4[1,1,2,2,6]. In the process, (a) for points away from the conifold locus, we show that the existence of a non‐supersymmetric attractor along with a consistent choice of fluxes and extremum values of the complex structure moduli, could be connected to the existence of an elliptic curve fibered over C 8 which may also be “arithmetic” (in some cases, it is possible to interpret the extremization conditions for the black‐hole superpotential as an endomorphism involving complex multiplication of an arithmetic elliptic curve), and (b) for points near the conifold locus, we show that existence of non‐supersymmetric black‐hole attractors corresponds to a version of A1‐singularity in the space Image( Z 6→ R 2/ Z 2 (↪ R 3)) fibered over the complex structure moduli space. The (derivatives of the) effective black hole potential can be thought of as a real (integer) projection in a suitable coordinate patch of the Veronese map: CP 5→ CP 20, fibered over the complex structure moduli space. We also discuss application of Kallosh's attractor equations (which are equivalent to the extremization of the effective black‐hole potential) for nonsupersymmetric attractors and show that (a) for points away from the conifold locus, the attractor equations demand that the attractor solutions be independent of one of the two complex structure moduli, and (b) for points near the conifold locus, the attractor equations imply switching off of one of the six components of the fluxes. Both these features are more obvious using the attractor equations than the extremization of the black hole potential.  相似文献   

18.
We investigate quantum entanglement of gravitational configurations in 3D AdS gravity using the AdS/CFT correspondence. We derive explicit formulas for the holographic entanglement entropy (EE) of the BTZ black hole, conical singularities and regularized AdS3. The leading term in the large temperature expansion of the holographic EE of the BTZ black hole reproduces exactly its Bekenstein-Hawking entropy S BH , whereas the subleading term behaves as ln S BH . We also show that the leading term of the holographic EE for the BTZ black hole can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus. This result indicates that black hole EE is not a fundamental feature of the underlying theory of quantum gravity but emerges when the semiclassical notion of spacetime geometry is used to describe the black hole.  相似文献   

19.
The assumption that galaxies and massive black holes were both created in an early cosmological era, and allowing that quasars had to be made in their collisions, is tested comparing this theory with the observational data on the distribution of number of quasars N with respect to the cosmological redshift Z. The theoretical model is sensitive to Zc-value of redshift at creational time, Zm-value(s) of redshift at peak(s) of the distribution N(Z) and λ - the decay constant of quasars. The peaks of distribution N(Z) are connected with the peaks in the mass spectrum of galaxies.  相似文献   

20.
We present a new class of black hole solutions with a minimally coupled scalar field in the presence of a negative cosmological constant. We consider an one-parameter family of self-interaction potentials parametrized by a dimensionless parameter g. When g = 0, we recover the conformally invariant solution of the Martinez–Troncoso–Zanelli (MTZ) black hole. A non-vanishing g signals the departure from conformal invariance. Thermodynamically, there is a critical temperature at vanishing black hole mass, where a higher-order phase transition occurs, as in the case of the MTZ black hole. Additionally, we obtain a branch of hairy solutions which undergo a first-order phase transition at a second critical temperature which depends on g and it is higher than the MTZ critical temperature. As g → 0, this second critical temperature diverges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号