首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemodynamic therapy (CDT) utilizes iron‐initiated Fenton chemistry to destroy tumor cells by converting endogenous H2O2 into the highly toxic hydroxyl radical (.OH). There is a paucity of Fenton‐like metal‐based CDT agents. Intracellular glutathione (GSH) with .OH scavenging ability greatly reduces CDT efficacy. A self‐reinforcing CDT nanoagent based on MnO2 is reported that has both Fenton‐like Mn2+ delivery and GSH depletion properties. In the presence of HCO3?, which is abundant in the physiological medium, Mn2+ exerts Fenton‐like activity to generate .OH from H2O2. Upon uptake of MnO2‐coated mesoporous silica nanoparticles (MS@MnO2 NPs) by cancer cells, the MnO2 shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn2+, resulting in GSH depletion‐enhanced CDT. This, together with the GSH‐activated MRI contrast effect and dissociation of MnO2, allows MS@MnO2 NPs to achieve MRI‐monitored chemo–chemodynamic combination therapy.  相似文献   

2.
DNAzymes hold promise for gene‐silencing therapy, but the lack of sufficient cofactors in the cell cytoplasm, poor membrane permeability, and poor biostability have limited the use of DNAzymes in therapeutics. We report a DNAzyme–MnO2 nanosystem for gene‐silencing therapy. MnO2 nanosheets adsorb chlorin e6‐labelled DNAzymes (Ce6), protect them from enzymatic digestion, and efficiently deliver them into cells. The nanosystem can also inhibit 1O2 generation by Ce6 in the circulatory system. In the presence of intracellular glutathione (GSH), MnO2 is reduced to Mn2+ ions, which serve as cofactors of 10–23 DNAzyme for gene silencing. The release of Ce6 generates 1O2 for more efficient photodynamic therapy. The Mn2+ ions also enhance magnetic resonance contrast, providing GSH‐activated magnetic resonance imaging (MRI) of tumor cells. The integration of fluorescence recovery and MRI activation provides fluorescence/MRI bimodality for monitoring the delivery of DNAzymes.  相似文献   

3.
Compared with traditional photodynamic therapy (PDT),ultrasound (US) triggered sonodynamic therapy (SDT) has a wide application prospect in tumor therapy because of its deeper penetration depth.Herein,a novel MnSiO3-Pt (MP) nanocomposite composed of Mn Si O3nanosphere and noble metallic Pt was successfully constructed.After modification with bovine serum albumin (BSA) and chlorine e6 (Ce6),the multifunctional nanoplatform Mn Si O3-Pt@BSA-Ce6 (MPBC) realized the m...  相似文献   

4.
《中国化学快报》2023,34(7):107951
Diabetic patients often have problems such as residual tumor and wound infection after tumor resection, causing severe clinical problems. It is urgent to develop effective therapies to reach oncotherapy/anti-infection/promotion of wound healing combined treatment. Herein, we propose CS/MnO2-GOx (CMGOx) nanocatalysts for the specific catalytic generation of OH to inhibit tumors and bacteria in a hyperglycemic environment. The good biocompatible chitosan (CS), as a carrier for the catalyst, exhibits excellent antibacterial effect as well as promotes wound healing. Glucose oxidase (GOx) is loaded on the surface of CS nanoparticles to generate H2O2 and gluconic acid by consuming glucose (starvation therapy, ST) and O2. The MnO2 depletes glutathione (GSH) to produce Mn2+, amplifying oxidative stress and further promoting the activity of Mn2+-mediated Fenton-like reaction to produce OH (chemodynamic therapy, CDT) in weak acidic environment. Moreover, the produced gluconic acid lowers the pH of the environment, enhancing chemodynamic therapy (ECDT). The tumor cells and bacteria are efficiently eliminated by the synergistic effect of ST and ECDT. The MnO2 nanoparticles at neutral environment decomposes H2O2 into O2, which cooperate with CS to promote healing. The self-enhanced cascade reaction of CMGOx in situ exhibits excellent effects of antitumor/antibacterial therapy and promotion of wound healing, offering a promising integrated treatment for diabetic patients after tumor surgical resection.  相似文献   

5.
Amphiphilic self-immolative polymers (SIPs) can achieve complete degradation solely through one triggerable event, which potentially optimize the blood clearance and uncontrollable/inert degradability for therapeutic nanoparticles. Herein, we report self-immolative amphiphilic poly(ferrocenes), BP nbs -Fc , composed by self-immolative backbone and aminoferrocene (AFc) side chains as well as end-capping poly(ethylene glycol) monomethyl ether. Upon triggering by tumor acidic milieu, the BP nbs -Fc nanoparticles readily degrade to release azaquinone methide (AQM) moieties, which can rapidly deplete intracellular glutathione (GSH) to cascade release AFc. Furthermore, both AFc and its product Fe2+ can catalyze intracellular hydrogen peroxide (H2O2) into highly reactive hydroxyl radicals (⋅OH), thus amplifying the oxidative stress of tumor cells. Rational synergy of GSH depletion and ⋅OH burst can efficiently inhibit tumor growth by the SIPs in vitro and in vivo. This work provides an elegant design to adopt innate tumor milieu-triggerable SIPs degradation to boost cellular oxidative stress, which is a promising candidate for precision medicine.  相似文献   

6.
Dihydroartemisinin (DHA) has attracted increasing attention as an anticancer agent. However, using DHA to treat cancer usually depends on the synergistic effects of exogenous components, and the loss of DHA during delivery reduces its effectiveness in cancer therapy. Reported herein is a programmed release nanoplatform of DHA to synergistically treat cancer with a Fe‐TCPP [(4,4,4,4‐(porphine‐5,10,15,20‐tetrayl) tetrakis(benzoic acid)] NMOF (nanoscale MOF) having a CaCO3 mineralized coating, which prevents DHA leakage during transport in the bloodstream. When the nanoplatform arrives at the tumor site, the weakly acidic microenvironment and high concentration of glutathione (GSH) trigger DHA release and TCPP activation, enabling the synergistic Fe2+‐DHA‐mediated chemodynamic therapy, Ca2+‐DHA‐mediated oncosis therapy, and TCPP‐mediated photodynamic therapy. In vivo experiments demonstrated that the nanoplatform showed enhanced anticancer efficiency and negligible toxicity.  相似文献   

7.
Persistent luminescence nanoparticles (PLNPs) hold great promise for the detection and imaging of biomolecules. Herein, we have demonstrated a novel nanoprobe, based on the manganese dioxide (MnO2)‐modified PLNPs, that can detect and image glutathione in living cells and in vivo. The persistent luminescence of the PLNPs can be efficiently quenched by the MnO2 nanosheets. In the presence of glutathione (GSH), MnO2 was reduced to Mn2+ and the luminescence of PLNPs can be restored. The persistent luminescence property can allow detection and imaging without external excitation and avoid the background noise originating from the in situ excitation. This strategy can offer a promising platform for detection and imaging of reactive species in living cells or in vivo.  相似文献   

8.
The Mn2(CO)10-catalyzed reactions of n-butylamine and cyclohexylamine with CO to give the corresponding ureas have been examined under a variety of conditions of temperature, CO pressure, reaction time, solvent and potential co-catalysts. With the diamines, ethylenediamine and 1,4-diaminobutane, there was no catalyzed reaction with CO. On the other hand, 1,3-diaminopropane gave 1,4,5,6-tetrahydropyrimidine, and 1,6-diaminohexane yielded a polyurea. In an effort to elucidate the mechanism of these reactions, several stoichiometric reactions were carried out. The reaction of Mn2(CO)10 with primary aliphatic amines proceeds to give a carbamoyl complex as follows: Mn2(CO)10 + 3 RNH2 ? cis-Mn(CO)4(NH2R)(CONHR) + RNH3+ + Mn(CO)5? Under CO pressure the isolated carbamoyl complex reacted to give the urea as follows: cis-Mn(CO)4(NH2R)(CONHR) + CO → (RNH)2CO + HMn(CO)5 The mechanism of this latter reaction is proposed to involve the intermediate formation of the organic isocyanate RNCO. These reactions are discussed as part of an overall mechanism for the Mn2(CO)10-catalyzed formation of ureas. The mechanism successfully accounts for factors which affect the yields of the reaction. Other metal carbonyl complexes, Re2(CO)10, (η-CH3C5H4)Mn(CO)3 and [η-C5H5Cr(CO)3]2, did not catalyze the reactions.  相似文献   

9.
The compounds of two types were isolated in the reactions of dimanganese decacarbonyl with diazoles. The compounds with an unaltered oxidation state of the metal were formed as a result of nucleophilic substitution of a carbonyl ligand of Mn2(CO)10. The compounds with an altered oxidation state of the central atom were produced in redox-transformations of Mn2(CO)10. The substances were characterized by the data of mass-, IR-, 1H-NMR-spectra. The EPR-data were obtained for paramagnetic Mn2+ salts. The reactions of Mn2(CO)10 with diazoles are compared with those of iron carbonyls.  相似文献   

10.
The photolysis of Mn2(CO)10 has been investigated over a range of solvents and temperatures and found to be more complicated than hitherto reported. Homolysis of the metal—metal bond in Mn2(CO)10 is the dominant photochemical process in all solvents are evidenced by trapping the Mn(CO)5. radical. A temperature dependent bifunctionality of the spin-trap 2,4,6-tri-t-butylnitrosobenzene was observed. The unstable adduct Mn(CO)5O2., previously characterised in the solid state, is formed in non-polar solvents in the absence of a trap. A paramagnetic species giving rise to a broad, structureless signal at ambient temperatures is the major product in basic solvents; in certain polar solvents at low temperatures, hyperfine coupling to manganese (A(Mn) 88 G) could be distinguished. Both spectra are believed to derive from the solvated manganese(II) ion.The controversial six-line spectrum found on photolysis of Mn2(CO)10 in tetrahydrofuran also results from a manganese(II) species. The unusual properties of the Mn2(CO)10/THF system may be explained in terms of ion-pair formation between the Mn2+ and Mn(CO)5? ions in solution.  相似文献   

11.
The kinetics and formation mechanism of doped corundum (α-Al2O3) from hydrargillite (γ-Al(OH)3) in supercritical water fluid (SCWF) in the presence of manganese ions are studied. It was ascertained that due to the reversible dehydroxylation in an aqueous medium, solid-phase transformation of hydrargillite into boehmite (γ-AlOOH) and then into corundum occurs with the formation of well-faceted corundum micro-crystals that are uniformly doped with manganese. It was found that when Mn2+ or MnO4 ions are introduced into the reaction medium, Mn5+, Mn4+, Mn3+, and Mn2+ ions are observed in the synthesized corundum. Meanwhile, the manganese ions form a complex defect in the corundum structure, which comprises oxygen vacancies and hydroxyl groups. The defects in corundum that emerge upon doping with manganese in SCWF are different from those in corundum doped during high-temperature synthesis.  相似文献   

12.
Redox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS-mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF-82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS-mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework-82 (ZIF-82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2O2 accumulation. These “disordered” cells show reduced resistance to ROS and are effectively killed by ferrous cysteine-phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS-mediated treatment of hypoxic tumors.  相似文献   

13.
The kinetics of the exchange between56Mn-labelled manganese dioxide and cations in aqueous solution was studied by measuring the β activity acquired by the solution. The results of the exchange between a chemical γ MnO2 and a divalent M2+ ion (M=Mn, Co, Cu or Zn) or a trivalent M3+ ion (M=Ga, Fe, In, Rh or Al) indicate a fast initial process followed by a diffusion—controlled exchange. It is assumed that M2+ ions exchange with Mn2+ ions and M3+ ions exchange with Mn3+ ions in MnO2. The process depends on the radii of the host and substituent ions and on consideration of crystal field stabilisation energies. It seems that the γ MnO2 studied contains more Mn3+ than Mn2+ ions. The possibility of the exchange between Mn ions and cations of a different charge cannot be ruled out. The exchange between Co2+ ions and MnO2 was enhanced in presence of pyrophosphate, which stabilises Mn(III) as a complex. The fraction of Mn in different samples of MnO2 exchanged with a given cation depends on the type and not on the surface area of the sample.  相似文献   

14.
Proton dissociation of an aqua‐Ru‐quinone complex, [Ru(trpy)(q)(OH2)]2+ (trpy = 2,2′ : 6′,2″‐terpyridine, q = 3,5‐di‐t‐butylquinone) proceeded in two steps (pKa = 5.5 and ca. 10.5). The first step simply produced [Ru(trpy)(q)(OH)]+, while the second one gave an unusual oxyl radical complex, [Ru(trpy)(sq)(O?.)]0 (sq = 3,5‐di‐t‐butylsemiquinone), owing to an intramolecular electron transfer from the resultant O2? to q. A dinuclear Ru complex bridged by an anthracene framework, [Ru2(btpyan)(q)2(OH)2]2+ (btpyan = 1,8‐bis(2,2′‐terpyridyl)anthracene), was prepared to place two Ru(trpy)(q)(OH) groups at a close distance. Deprotonation of the two hydroxy protons of [Ru2(btpyan)(q)2(OH)2]2+ generated two oxyl radical Ru‐O?. groups, which worked as a precursor for O2 evolution in the oxidation of water. The [Ru2(btpyan)(q)2(OH)2](SbF6)2 modified ITO electrode effectively catalyzed four‐electron oxidation of water to evolve O2 (TON = 33500) under electrolysis at +1.70 V in H2O (pH 4.0). Various physical measurements and DFT calculations indicated that a radical coupling between two Ru(sq)(O?.) groups forms a (cat)Ru‐O‐O‐Ru(sq) (cat = 3,5‐di‐t‐butylcathechol) framework with a μ‐superoxo bond. Successive removal of four electrons from the cat, sq, and superoxo groups of [Ru2(btpyan)(cat)(sq)(μ‐O2?)]0 assisted with an attack of two water (or OH?) to Ru centers, which causes smooth O2 evolution with regeneration of [Ru2(btpyan)(q)2(OH)2]2+. Deprotonation of an Ru‐quinone‐ammonia complex also gave the corresponding Ru‐semiquinone‐aminyl radical. The oxidized form of the latter showed a high catalytic activity towards the oxidation of methanol in the presence of base. Three complexes, [Ru(bpy)2(CO)2]2+, [Ru(bpy)2(CO)(C(O)OH)]+, and [Ru(bpy)2(CO)(CO2)]0 exist as an equilibrium mixture in water. Treatment of [Ru(bpy)2(CO)2]2+ with BH4? gave [Ru(bpy)2(CO)(C(O)H)]+, [Ru(bpy)2(CO)(CH2OH)]+, and [Ru(bpy)2(CO)(OH2)]2+ with generation of CH3OH in aqueous conditions. Based on these results, a reasonable catalytic pathway from CO2 to CH3OH in electro‐ and photochemical CO2 reduction is proposed. A new pbn (pbn = 2‐pyridylbenzo[b]‐1,5‐naphthyridine) ligand was designed as a renewable hydride donor for the six‐electron reduction of CO2. A series of [Ru(bpy)3‐n(pbn)n]2+ (n = 1, 2, 3) complexes undergoes photochemical two‐ (n = 1), four‐ (n = 2), and six‐electron reductions (n = 3) under irradiation of visible light in the presence of N(CH2CH2OH)3. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 169–186; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800039  相似文献   

15.
The sarkinite, Mn2(OH)AsO4, mineral has been synthesized in laboratory as pure phase under mild hydrothermal conditions. The decomposition process of the hydroxiarsenate compound is strongly dependent on the atmospheric conditions. The results of the thermal treatment in air or argon are quite different. In this way, a new black phase appears in air atmosphere in the 400‐630 °C temperature range whereas under inert atmosphere the structure of Mn2(OH)AsO4 at room temperature is maintained up to 560 °C. The weight loss is attributed to the partial decomposition of Mn2(OH)AsO4 above 400 °C with removal of OH groups and the oxidation of MnII to MnIII that occur simultaneously. Above 650 °C, the structures of the intermediate compounds are broken and the evolution of the inorganic residues gives rise to the formation of arsenates and oxides of MnII and MnIII in inert and air atmospheres.  相似文献   

16.
以浸渍在不同晶相TiO2 (金红石型(R)、锐钛矿型(A)和P25型(P))上的锰基催化剂为对象,研究了TiO2晶相对MnOx/TiO2催化剂催化NO氧化活性的影响。 结果表明,MnOx/TiO2(P)催化剂活性最高,NO转化率在300℃及GHSV = 20000 h-1条件下可达83%。 各催化剂活性顺序为MnOx/TiO2(P)>MnOx/TiO2(A)>MnOx/TiO2(R)。采用X射线粉末衍射、场发射扫描电子显微镜、X射线光电子能谱、H2程序升温还原和O2程序升温脱附等手段研究了TiO2晶相影响MnOx/TiO2催化剂催化活性的作用机理。结果表明,相比于A和R型TiO2,P型TiO2能够增加MnOx在其表面的分散度并抑制催化剂颗粒的团聚和粘连,且更有利于Mn2O3的生成,而后者催化NO氧化活性比其它MnOx更高;此外,P型TiO2可以增加MnOx尤其是Mn2O3的还原性,并可促进O2-从M3+-O键的脱附。  相似文献   

17.
《Polyhedron》1999,18(20):2673-2677
Photolysis of Mn2(CO)10 with the distibinomethanes Ph2SbCH2SbPh2 (dpsm) and Me2SbCH2SbMe2 (dmsm) yields [Mn2(CO)6(dpsm)2] and [Mn2(CO)8(dmsm)], respectively, which have been characterised by IR, 1H, 13C{1H} NMR spectroscopies and fast atom bombardment (FAB) mass spectrometry. Similar photolysis of the ligands with Re2(CO)10 yields axially substituted [Re2(CO)91-distibinomethane)]. The X-ray crystal structure of [Mn2(CO)6(dpsm)2] reveals two dpsm ligands, each bonding to the two metal centres [Mn–Mn 3.098(2), Mn–Sb 2.487(2)–2.500(2) Å].  相似文献   

18.
A tetranuclear manganese complex of the composition {Mn4[(Py)C(Ph)NO]4(CH3CH2OH)3(CH3CH2O)Cl3}·2H2O ( 1 ) was synthesized by solvothermal reaction, and characterized by X‐ray single crystal diffraction, IR spectroscopy, and elemental analysis. X‐ray analysis revealed that complex 1 contains a [Mn4(NO)4]4+ core with three MnII atoms displaying distorted octahedral arrangements and one MnII ion exhibiting a trigonal bipyramidal arrangement. Low‐temperature magnetic susceptibility measurement for the solid sample of 1 revealed antiferromagnetic MnII ··· MnII interactions.  相似文献   

19.
1 The anions [Ir4(CO)11(COOR)- (R  Me, Et) have been prepared by reacting Ir4(CO)12 with alkali alkoxides in dry alcohol and under an atmosphere of carbon monoxide. The reaction of [Ir4(CO)11(COOMe)]- with primary and secondary alcohols (EtOH, PriOH) gives rise to specific alcoholysis. The anions [Ir4(CO)11(COOR)- react with acids in THF solution to give quantitatively Ir4(CO)12. The chemical, spectroscopic and crystallographic characterization of the tetranuclear anions are reported.  相似文献   

20.
Deprotonation of Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph Cy) for Synthesis of Heteronuclear Manganese-Gold Clusters with Mn2Aun Cores (n = 1–3) The dimanganese complexes Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph, Cy) have been deprotonated with 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) in tetrahydrofuran solution at 20°C to give the anions [Mn2(μ-PR2)(CO)8]?, which were isolated as tetraethylammonium salts. Both dimanganese complexes and the related anions were measured by cyclic voltammetry. The treatment of the aforementioned dimanganese complexes in thf solution with Lir' (R =Me, Ph) and subsequently with PPh3AuCl gave at 20°C three types of products: Mn2(μ-PR2(CO)8(AuPPh3),Mn2(μ-PR2)(μ-C(R′)O)(CO)6-(AuPPh3)2 and Mn2(μ-PR2)(CO)6(AuPPh3)3. The newly prepared substances were characterized by means of IR-, UV/VIS, 31P NMR data. The results of single X-ray analyses showed for the three-membered metal ring compound Mn2(μ-PPh2)(CO)8(AuPPh3) an uni-fold bridged σ(Mn? Mn) bond length of 306.7(3) pm, the metallatetrahedron complex Mn2(μ-PPh3)(μ-C(Ph)O(CO)6(AuPPh3)2 a twofold bridged σ(Mn? Mn) bond length of 300.6(4) pm and the trigonal-bipyramidal cluster Mn2(μ-Pph2)(CO)6(AuPPh3)3 an uni-fold bridged π(Mn? Mn) bond length of 274.7(3) pm. The Mn? Au bonds of these substances are accompanyied by semi-bridging CO ligands which are signified through short Au…C contact lengths in the range of 251 to 270 pm. In the substance with the Mn2Au2 metallatetrahedron core exists, additionally, such a contact with the acylic C atom of C(Ph)O bridging group of 263.4(18) pm. Such contact lengths were compared for corresponding dimanganese and dirhenium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号