首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zika virus (ZIKV) infection has been associated with Guillain-Barre syndrome in adults and microcephaly in infants. The existence of insufficient structural data in most of the protein databases hinders the synthesis of anti-ZIKV pharmaceutics. In this work, we attempted to model the catalytic domain of the ZIKV RNA polymerase (RdRpC) along with a detailed assessment of conserved aspartates in ZIKV RdRpC palm domain as potential drug targets. The conserved and catalytically active aspartate residues present in the predicted RdRpC protein were virtually screened against a ZINC database for inhibitors, and the selected potential drug candidates were further filtered based on their ADMET profiles. One of the pharmacokinetically active compounds (Ligand 6) showed a remarkable docking profile against the strictly conserved aspartate residues of the RdRpC active site. We hypothesize that the Ligand 6 may form a potential drug candidate for RdRpC inhibition in the clinical treatment of ZIKV infection.  相似文献   

2.
In order to identify novel chemical classes of factor Xa inhibitors, five scoring functions (FlexX, DOCK, GOLD, ChemScore and PMF) were engaged to evaluate the multiple docking poses generated by FlexX. The compound collection was composed of confirmed potent factor Xa inhibitors and a subset of the LeadQuest screening compound library. Except for PMF the other four scoring functions succeeded in reproducing the crystal complex (PDB code: 1FAX). During virtual screening the highest hit rate (80%) was demonstrated by FlexX at an energy cutoff of -40 kJ/mol, which is about 40-fold over random screening (2.06%). Limited results suggest that presenting more poses of a single molecule to the scoring functions could deteriorate their enrichment factors. A series of promising scaffolds with favorable binding scores was retrieved from LeadQuest. Consensus scoring by pair-wise intersection failed to enrich the hit rate yielded by single scorings (i.e. FlexX). We note that reported successes of consensus scoring in hit rate enrichment could be artificial because their comparisons were based on a selected subset of single scoring and a markedly reduced subset of double or triple scoring. The findings presented in this report are based upon a single biological system and support further studies.  相似文献   

3.
The pathogenic Ebola virus (EBOV) causes a potential health risk and global spread. To date, few drugs are available for the treatment of Ebola virus disease (EVD) that allow researchers to use computational methods for designing potential drugs. The developed PHASE-based common six-point pharmacophore hypothesis (AADHPR_1) showed the necessity of two hydrogen bond acceptor features, one hydrogen bond donor feature, one hydrophobic group feature, one positively ionizable and one aromatic ring feature for further designing. We developed best 3D-QSAR models with high regression coefficients for the training (r2>0.82) and test (Q2>0.5) sets for both atoms-based and field-based 3D-QSAR models. The molecule 1A-4 (docking score = –4.711 kcal/mol) was obtained as best docked (SP mode) on Ebola virus envelope glycoprotein (PDB ID-3CSY) as compared with the standards oseltamivir (docking score = –4.39 kcal/mol) and zanamivir (docking score = –3.392 kcal/mol). The obtained ZINC hit ZINC58935541 showed a good docking score of –4.892 kcal/mol. The ZINC58935541 molecule also showed a strong binding affinity towards the receptor cavity of Ebola virus envelope glycoprotein when simulated for 1.2 ns. The good QikProp parameters reflect the fact that this molecule, upon optimization into a lead, might become a good candidate for the treatment of EVD.  相似文献   

4.
Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q 2 = 0.763, r 2 = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.  相似文献   

5.
Multidrug resistance (MDR) is one of the serious problems in cancer research that causes failure in chemotherapy. Chromene-based compounds have been proven to be the novel anti-MDR agents for inhibiting proliferation of tumor cells through tubulin polymerization inhibition of by binding at the colchicine binding site. In this study, we screened a chromene-based database of small molecules using physicochemical, ADMET properties and molecular docking to identify potential hit compounds. In order to validate our hit compounds, molecular dynamics simulations and related analysis were carried out and the results suggest that our hit compounds (PubChem CIDs: 16814409, 17594471, 57367244 and 69899719) can prove to be potential inhibitors of tubulin. The in silico results show that the present hits, like colchicine, effectively suppressed the dynamic instability of microtubules and induced microtubule-depolymerization and cell cycle arrest.  相似文献   

6.
7.
The enzyme β-secretase-1 is responsible for the cleavage of the amyloid precursor protein, a vital step in the process of the formation of amyloid-β peptides which are known to lead to neurodegeneration causing Alzheimer’s disease. Challenges associated with toxicity and blood brain permeation inability of potential inhibitors, continue to evade a successful therapy, thus demanding the search and development of highly active and effective inhibitors. Towards these efforts, we used a ligand based pharmacophore model generation from a dataset of known inhibitors whose activities against β-secretase hovered in the nano molar range. The identified 5 feature pharmacophore model, AHHPR, was validated via three dimensional quantitative structure activity relationship as indicated by r2, q2 and Pearson R values of 0.9013, 0.7726 and 0.9041 respectively. For a dataset of compounds with nano molar activity, the important pharmacophore features present in the current model appear to be similar with those observed in the models resulting from much wider activity range of inhibitors. Virtual screening of the ChemBridge CNS-Set™, a database having compounds with a better suitability for central nervous system based disorders followed by docking and analysis of the ligand protein interactions resulted in the identification of eight prospective compounds with considerable diversity. The current pharmacophore model can thus be useful for the identification, design and development of potent β-secretase inhibitors which by optimization can be potential therapeutics for Alzheimer’s disease.  相似文献   

8.
9.
《Mendeleev Communications》2022,32(6):735-738
Here we propose an over-the-hood docking method that compensates for systematic errors in the docking force fields. This method explicitly estimates the interaction energy of the ligand with the protein surface and uses it as a baseline to estimate the actual binding energy in the active site. It improves the accuracy of virtual screening in the LeadFinder package by up to 48%.  相似文献   

10.
As an extension to a previous published study (McGaughey et al., J Chem Inf Model 47:1504–1519, 2007) comparing 2D and 3D similarity methods to docking, we apply a subset of those virtual screening methods (TOPOSIM, SQW, ROCS-color, and Glide) to a set of protein/ligand pairs where the protein is the target for docking and the cocrystallized ligand is the target for the similarity methods. Each protein is represented by a maximum of five crystal structures. We search a diverse subset of the MDDR as well as a diverse small subset of the MCIDB, Merck’s proprietary database. It is seen that the relative effectiveness of virtual screening methods, as measured by the enrichment factor, is highly dependent on the particular crystal structure or ligand, and on the database being searched. 2D similarity methods appear very good for the MDDR, but poor for the MCIDB. However, ROCS-color (a 3D similarity method) does well for both databases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Summary A methodology aimed at improving the accuracy of current docking–scoring procedures is proposed, and validated through detailed tests of its performance in predicting the activity of HIV-1 protease inhibitors. This methodology is based on molecular dynamics simulations using a force field whose effective charges are refined by means of a novel procedure that relies on quantum-mechanical calculations and preserves the internal consistency of the parameterization scheme.  相似文献   

12.
The resistances of matrix protein 2 (M2) protein inhibitors and neuraminidase inhibitors for influenza virus have attracted much attention and there is an urgent need for new drug. The antiviral drugs that selectively act on RNA polymerase are less prone to resistance and possess fewer side effects on the patient. Therefore, there is increased interest in screening compounds that can inhibit influenza virus RNA polymerase. Three natural compounds were found by using molecular docking-based virtual screening, which could bind tightly within the polymerase acidic protein-polymerase basic protein 1 (PA-PB1) subunit of influenza virus polymerase. Firstly, their drug likeness properties were evaluated, which showed that the hepatotoxicity values of all the three compounds indicating they had less or no hepatotoxicity, and did not have the plasma protein biding (PPB) ability, the three compounds needed to be modified in some aspects, like bulky molecular size. The stability of the complexes of PA-hits was validated through molecular dynamics (MD) simulation, revealing compound 2 could form more stable complex with PA subunit. The torsional conformations of each rotatable bond of the ligands in PA subunit were also monitored, to investigate variation in the ligand properties during the simulation, compound 3 had fewer rotatable bonds, indicating that the molecule had stronger rigidity. The bar charts of protein–ligand contacts and contacts over the course of trajectory showed that four key residues (Glu623, Lys643, Asn703 and Trp706) of PA subunit that participated in hydrogen-bond, water bridge and hydrophobic interactions with the hit compounds. Finally, the binding free energy and contributed energies were calculated by using MM-GBSA method. Out of the three compounds, compound 1 showed the lowest total binding free energy. Among all the interactions, the contribution of the covalent binding and the van der Waals energy were more than other items, compound 1 formed more stable hydrogen bonds with the residues of PA subunit binding pocket. This study smoothed the path for the development of novel lead compounds with improved binding properties, high drug likeness, and low toxicity to humans for the treatment of influenza, which provided a good basis for further research on novel and effective influenza virus PA-PB1 interaction inhibitors.  相似文献   

13.
For the successful identification and docking of new ligands to a protein target by virtual screening, the essential features of the protein and ligand surfaces must be captured and distilled in an efficient representation. Since the running time for docking increases exponentially with the number of points representing the protein and each ligand candidate, it is important to place these points where the best interactions can be made between the protein and the ligand. This definition of favorable points of interaction can also guide protein structure-based ligand design, which typically focuses on which chemical groups provide the most energetically favorable contacts. In this paper, we present an alternative method of protein template and ligand interaction point design that identifies the most favorable points for making hydrophobic and hydrogen–bond interactions by using a knowledge base. The knowledge-based protein and ligand representations have been incorporated in version 2.0 of SLIDE and resulted in dockings closer to the crystal structure orientations when screening a set of 57 known thrombin and glutathione S–transferase (GST) ligands against the apo structures of these proteins. There was also improved scoring enrichment of the dockings, meaning better differentiation between the chemically diverse known ligands and a 15,000-molecule dataset of randomly-chosen small organic molecules. This approach for identifying the most important points of interaction between proteins and their ligands can equally well be used in other docking and design techniques. While much recent effort has focused on improving scoring functions for protein-ligand docking, our results indicate that improving the representation of the chemistry of proteins and their ligands is another avenue that can lead to significant improvements in the identification, docking, and scoring of ligands.(These authors contributed equally to this work)  相似文献   

14.
We present results of testing the ability of eleven popular scoring functions to predict native docked positions using a recently developed method (Ruvinsky and Kozintsev, J Comput Chem 2005, 26, 1089) for estimation the entropy contributions of relative motions to protein-ligand binding affinity. The method is based on the integration of the configurational integral over clusters obtained from multiple docked positions. We use a test set of 100 PDB protein-ligand complexes and ensembles of 101 docked positions generated by (Wang et al. J Med Chem 2003, 46, 2287) for each ligand in the test set. To test the suggested method we compared the averaged root-mean square deviations (RMSD) of the top-scored ligand docked positions, accounting and not accounting for entropy contributions, relative to the experimentally determined positions. We demonstrate that the method increases docking accuracy by 10-21% when used in conjunction with the AutoDock scoring function, by 2-25% with G-Score, by 7-41% with D-Score, by 0-8% with LigScore, by 1-6% with PLP, by 0-12% with LUDI, by 2-8% with F-Score, by 7-29% with ChemScore, by 0-9% with X-Score, by 2-19% with PMF, and by 1-7% with DrugScore. We also compared the performance of the suggested method with the method based on ranking by cluster occupancy only. We analyze how the choice of a clustering-RMSD and a low bound of dense clusters impacts on docking accuracy of the scoring methods. We derive optimal intervals of the clustering-RMSD for 11 scoring functions.  相似文献   

15.
White spot syndrome virus (WSSV) remains as one of the most dreadful pathogen of the shrimp aquaculture industry owing to its high virulence. The cumulative mortality reaches up to 100% within in 2–10 days in a shrimp farm. Currently, no chemotherapeutics are available to control WSSV. The viral envelope protein, VP28, located on the surface of the virus particle acts as a vital virulence factor in the initial phases of inherent WSSV infection in shrimp. Hence, inhibition of envelope protein VP28 could be a novel way to deal with infection by inhibiting its interaction in the endocytic pathway. In this direction, a timely attempt was made to recognize a potential drug candidate of marine origin against WSSV using VP28 as a target by employing in silico docking and molecular dynamic simulations. A virtual library of 388 marine bioactive compounds was extracted from reports published in Marine Drugs. The top ranking compounds from docking studies were chosen from the flexible docking based on the binding affinities (ΔGb). In addition, the MD simulation and binding free energy analysis were implemented to validate and capture intermolecular interactions. The results suggested that the two compounds obtained a negative binding free energy with −40.453 kJ/mol and −31.031 kJ/mol for compounds with IDs 30797199 and 144162 respectively. The RMSD curve indicated that 30797199 moves into the hydrophobic core, while the position of 144162 atoms changes abruptly during simulation and is mostly stabilized by water bridges. The shift in RMSD values of VP28 corresponding to ligand RMSD gives an insight into the ligand induced conformational changes in the protein. This study is first of its kind to elucidate the explicit binding of chemical inhibitor to WSSV major structural protein VP28.  相似文献   

16.
Sun W  Jiao K  Zhang S 《Talanta》2001,55(6):1235-1218
A sensitive electrochemical enzyme-linked immunosorbent assay (ELISA) for the determination of cucumber mosaic virus (CMV) was proposed in this paper. The activity of labeled enzyme, horseradish peroxidase, was measured with electrochemical methods using o-phenylenediamine as substrate. The enzymatic reaction product is 2,3-diaminophenazine, which can be easily reduced on the dropping mercury electrode with improved sensitivity. Coupled with the plate trapped antigen indirect ELISA format using polyclonal rabbit antibody of CMV, the electrochemical detection was performed for CMV with the detection limit of 0.5 ng ml−1, which is ten times more sensitive than the colorimetric ELISA method. The conditions for enzymatic reaction and immunoassay were carefully optimized.  相似文献   

17.
Glutamine: fructose-6-phosphate amidotransferase (GFAT), also termed GFPT1 and GFAT1, catalyzes the first committed step of the hexosamine biosynthesis pathway in mammals and consequently plays an important role in type 2 diabetes. In the present study, a combination of pharmacophore modelling, homology modelling, and molecular docking analysis was performed to design new glutamine competitive inhibitors of human GFAT, and to investigate important interaction details of inhibitor molecules. A pharmacophore model of GFAT inhibitors was developed, subsequently validated, and utilized for the screening by the PHASE database to identify new molecules. Afterwards, homology modelling was performed to construct the glutamine-binding site of the GFAT protein. The modelled active site was utilized to dock the studied molecules to investigate important receptor-ligand interactions and to scrutinize database-screened molecules on the basis of essential interactions. This systematic in silico protocol helped us to identify new molecules that would be explored for the treatment of type 2 diabetes and its complications.  相似文献   

18.
In this paper, two 3‐dimensional quantitative structure‐activity relationship models for 60 human immunodeficiency virus (HIV)‐1 protease inhibitors were established using random sampling analysis on molecular surface and translocation comparative molecular field vector analysis (Topomer CoMFA). The non–cross‐validation (r2), cross‐validation (q2), correlation coefficient of external validation (Q2ext), and F of 2 models were 0.94, 0.80, 0.79, and 198.84 and 0.94, 0.72, 0.75, and 208.53, respectively. The results indicated that 2 models were reasonable and had good prediction ability. Topomer Search was used to search R groups in the ZINC database, 20 new compounds were designed, and the Topomer CoMFA model was used to predicate the biological activity. The results showed that 18 new compounds were more active than the template molecule. So the Topomer Search is effective in screening and can guide the design of new HIV/AIDS drugs. The mechanism of action was studied by molecular docking, and it showed that the protease inhibitors and Ile50, Asp25, and Arg8 sites of HIV‐1 protease have interactions. These results have provided an insight for the design of new potent inhibitors of HIV‐1 protease.  相似文献   

19.
A novel computer algorithm FluClass has been developed to facilitate the phylogenetic classification of influenza virus using mass spectral data. FluClass accepts a DNA or protein-based phylogenetic tree as input and generates theoretical peptide mass lists for each node. An experimental mass spectrum from an influenza virus protein digest is then placed onto the phylogenetic tree using a novel random resampling function (Z-score) that allows the scoring of spectrum against both internal and leaf nodes. Testing of the algorithm using hemagglutinin protein sequences from human-host influenza viruses showed that the Z-score performs comparably to the Profound scoring method for the scoring of leaf nodes and is substantially better at scoring internal nodes. Scoring of internal nodes allows colorizations of nodes of the phylogenetic tree enabling the classification of the query spectrum to be rapidly visualized. Finally we demonstrate the utility of FluClass on experimental spectra from six strains. Given that mass spectrometry data can be generated rapidly for influenza virus proteins, FluClass provides a fast and direct method for phylogenetic analysis of influenza proteins.  相似文献   

20.
Y. Tanaka  S. Terabe 《Chromatographia》1997,44(3-4):119-128
Summary Separation of the enantiomers of a variety of basic drugs by affinity capillary electrophoresis has been investigated using α1-acid glycoprotein (α1-AGP) as chiral selector. In order to use a high concentration of α1-AGP without causing low detection sensitivity, the partial filling technique was employed. Enantiomer separations were performed under conditions (a running buffer at pH 5.0 or 6.0) causing the protein to migrate toward the injection end. Twenty nine basic racemates were successfully separated by optimizing the protein concentration, buffer pH and organic modifier. α1-AGP obtained from three different suppliers was used to investigate differences among the proteins from different sources. Although most of the racemates were similarly separated with any of the three types of α1-AGP, some racemates, e.g. acebutolol behaved differently with the three types. The reasons for the different enantioselectivities of the three types of α1-AGP has not yet been clarified. The method was used to test the optical purity of commercial sulpiride enantiomers and it was found that the method was suitable and applicable for the purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号