首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
KIA7, a peptide with a highly restricted set of amino acids (Lys, Ile, Ala, Gly and Tyr), adopts a specifically folded structure. Some amino acids, including Lys, Ile, Ala, Gly and His, form under the same putative prebiotic conditions, whereas different conditions are needed for producing Tyr, Phe and Trp. Herein, we report the 3D structure and conformational stability of the peptide KIA7H, which is composed of only Lys, Ile, Ala, Gly and His. When the imidazole group is neutral, this 20‐mer peptide adopts a four‐helix bundle with a specifically packed hydrophobic core. Therefore, one‐pot prebiotic proteins with well‐defined structures might have arisen early in chemical evolution. The Trp variant, KIA7W, was also studied. It adopts a 3D structure similar to that of KIA7H and its previously studied Tyr and Phe variants, but is remarkably more stable. When tested for ribonucleolytic activity, KIA7H, KIA7W and even short, unstructured peptides rich in His and Lys, in combination with Mg++, Mn++ or Ni++ (but not Cu++, Zn++ or EDTA) specifically cleave the single‐stranded region in an RNA stem–loop. This suggests that prebiotic peptide–divalent cation complexes with ribonucleolytic activity might have co‐inhabited the RNA world.  相似文献   

2.
A series of chromone derivatives containing substituted pyrazole were designed and synthesized. Preliminary bioassays showed that most of the synthesized compounds exhibited good nematicidal activity in vivo against Meloidogyne incognita at 10 mg/L.  相似文献   

3.
We have examined the impact of C-H...pi and hydrophobic interactions in the diagonal position of a beta-hairpin peptide through comparison of the interaction of Phe, Trp, or Cha (cyclohexylalanine) with Lys or Nle (norleucine). NMR studies, including NOESY and chemical shift perturbation studies, of the Lys side chain indicates that Lys interacts in a specific geometry with Phe or Trp through the polarized C epsilon. In contrast, Nle does not interact in a specific manner with the diagonal aromatic residue. Thermal denaturation provides additional support that Lys and Nle interact in fundamentally different manners. Folding of the peptide with a diagonal Trp...Lys interaction was found to be enthalpically driven, whereas the peptide with a diagonal Trp...Nle interaction displayed cold denaturation, as did the control peptide with a diagonal Cha...Nle interaction, indicating different driving forces for interaction of Lys and Nle with Trp. These findings have significant implications for specificity in protein folding and de novo protein design.  相似文献   

4.
Pillar[5]arene-based molecular universal joints(MUJs), bearing fused crown ether subring(MUJ1 and MUJ3) or a ring without ether oxygen atom(MUJ2), were synthesized and enantio–differentiated. Significant chiral inversion was observed for the crown ether-fused MUJs upon the addition of equivalent cations Na+, showing an anisotropy(g) factor of 0.014, while alkyl subring-fused MUJ2 showed no CD inversions. Unprecedentedly, sodium ion triggered rolling-in motion of the subring to the pillar[5]arene...  相似文献   

5.
蛋白质中的阳离子-π相互作用是带正电荷的氨基酸(Lys、Arg)和芳香族氨基酸(Phe、Tyr、Trp)之间的一种作用力.对α/β类蛋白中两种典型折叠类型(单绕和双绕)的研究表明:(1)单绕结构中阳离子-π相互作用的分布密度大约是双绕结构中的2.6倍;(2)在单绕结构中,样本所含氨基酸残基数量与样本中阳离子-π的数量有明显的相关性,在双绕结构中没有发现类似的相关性;(3)Lys、Arg与Tyr在单绕中比在双绕中更容易形成阳离子-π相互作用;(4)Arg-Tyr组合在单绕中出现的几率较大,Arg-Phe组合在双绕中出现的几率较大;(5)阳离子-π相互作用在65%的单绕样本中形成阵列或分布在结构的首尾间.  相似文献   

6.
Cation-π interaction is comparable and as important as other main molecular interaction types, such as hydrogen bond, electrostatic interaction, van der Waals interaction, and hydrophobic interaction. Cation-π interactions frequently occur in protein structures, because six (Phe, Tyr, Trp, Arg, Lys, and His) of 20 natural amino acids and all metallic cations could be involved in cation-π interaction. Cation-π interactions arise from complex physicochemical nature and possess unique interaction behaviors, which cannot be modeled and evaluated by existing empirical equations and force field parameters that are widely used in the molecular dynamics. In this study, the authors present an empirical approach for cation-π interaction energy calculations in protein interactions. The accurate cation-π interaction energies of aromatic amino acids (Phe, Tyr, and Try) with protonated amino acids (Arg and Lys) and metallic cations (Li(+), Na(+), K(+), and Ca(2+)) are calculated using B3LYP/6-311+G(d,p) method as the benchmark for the empirical formulization and parameterization. Then, the empirical equations are built and the parameters are optimized based on the benchmark calculations. The cation-π interactions are distance and orientation dependent. Correspondingly, the empirical equations of cation-π interactions are functions of two variables, the distance r and the orientation angle θ. Two types of empirical equations of cation-π interactions are proposed. One is a modified distance and orientation dependent Lennard-Jones equation. The second is a polynomial function of two variables r and θ. The amino acid-based empirical equations and parameters provide simple and useful tools for evaluations of cation-π interaction energies in protein interactions.  相似文献   

7.
The function of the active‐site residues of oxidosqualene cyclases (OSCs) has been presumed mainly in light of the product distribution; however, not much research has been performed into the enzymatic activity of mutated OSCs. β‐Amyrin, which is widely found in the plant kingdom, is classified as an OSC; mutational studies on β‐amyrin cyclase are very limited. Six site‐specific mutations targeted at the Phe728 residue of Euphorbia tirucalli β‐amyrin synthase (EtAS) were constructed to inspect the function of this aromatic residue. We developed a simple method to evaluate the in vivo enzymatic activity; the expression levels of EtASs and the quantities of the cyclic triterpenes produced were determined by use of western blot and GC analyses, respectively. Measurement of the relative in vivo activity of the mutants versus that of the wild‐type enzyme showed that the Ala, Met, His, and Trp variants had significantly decreased activity, but that the Tyr mutant had a high activity, which was nearly the same as that of the wild‐type enzyme. In contrast to Tyr, Ala and Met possess no π‐electrons; thus, the role of Phe728 is to stabilize the cationic intermediates, resulting in facilitation of the ring‐expansion processes, especially by stabilizing the secondary cations. The decreased activity of the Trp mutant is ascribed to the introduction of a large steric bulk, leading to looser binding of oxidosqualene in the Trp variant. The His mutant afforded germanicol as the main product, indicating that the Phe residue is located near the D/E‐ring‐formation site. Changes in the steric bulk gave some cationic intermediates, resulting in the formation of 13 cyclic triterpenes, including an unnatural triterpene, (17E)‐dammara‐17(20),24‐dien‐3β‐ol, and isoursenol, which has rarely been found in nature. In this study, we provide the first experimental evidence that cation–π interactions play a key role in the catalytic action of OSCs.  相似文献   

8.
The behavior of 6 pseudopeptidic models, synthesized by connecting different protected amino acids (Trp, Tyr, Phe, and Lys) with various diamino spacers, as quenchers of the triplet excited state of tiaprofenic acid (and its methyl ester), has been investigated. A series of quenching constants have been determined, which depend on the nature of the quencher and on the stereochemistry of the excited drug. A significant degree of stereodifferentiation has been found for the peptidomimetic synthesized with Phe and Tyr linked by a piperazine bridge. The obtained results support the utility of laser flash photolysis (LFP) as a tool to investigate the interactions between photoexcited drugs and simple models of binding sites in proteins.  相似文献   

9.
The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2'-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.  相似文献   

10.
Cation-pi interactions between amino acid side chains are increasingly being recognized as important structural and functional features of proteins and other biomolecules. Although these interactions have been found in static protein structures, they have not yet been detected in dynamic biomolecular systems. We determined, by (1)H NMR spectroscopic titrations, the energies of cation-pi interactions of the amino acid derivative AcLysOMe (1) with AcPheOEt (2) and with AcTyrOEt (3) in aqueous and three organic solvents. The interaction energy is substantial; it ranges from -2.1 to -3.4 kcal/mol and depends only slightly on the dielectric constant of the solvent. To assess the effects of auxiliary interactions and structural preorganization on formation of cation-pi interactions, we studied these interactions in the association of pentapeptides. Upon binding of the positively-charged peptide AcLysLysLysLysLysNH(2) (5) to the negatively-charged partner AcAspAspXAspAspNH(2) (6), in which X is Leu (6a), Tyr (6b), and Phe (6c), multiple interactions occur. Association of the two pentapeptides is dynamic. Free peptides and their complex are in fast exchange on the NMR time-scale, and 2D (1)H ROESY spectra of the complex of the two pentapeptides do not show intermolecular ROESY peaks. Perturbations of the chemical shifts indicated that the aromatic groups in peptides 6b and 6c were affected by the association with 5. The association constants K(A) for 5 with 6a and with 6b are nearly equal, (4.0 +/- 0.7) x 10(3) and (5.0 +/- 1.0) x 10(3) M(-)(1), respectively, while K(A) for 5 with 6c is larger, (8.3 +/- 1.3) x 10(3) M(-)(1). Molecular-dynamics (MD) simulations of the pentapeptide pairs confirmed that their association is dynamic and showed that cation-pi contacts between the two peptides are stereochemically possible. A transient complex between 5 and 6 with a prominent cation-pi interaction, obtained from MD simulations, was used as a template to design cyclic peptides C(X) featuring persistent cation-pi interactions. The cyclic peptide C(X) had a sequence in which X is Tyr, Phe, and Leu. The first two peptides do, but the third does not, contain the aromatic residue capable of interacting with a cationic Lys residue. This covalent construct offered conformational stability over the noncovalent complexes and allowed thorough studies by 2D NMR spectroscopy. Multiple conformations of the cyclic peptides C(Tyr) and C(Phe) are in slow exchange on the NMR time-scale. In one of these conformations, cation-pi interaction between Lys3 and Tyr9/Phe9 is clearly evident. Multiple NOEs between the side chains of residues 3 and 9 are observed; chemical-shift changes are consistent with the placement of the side chain of Lys3 over the aromatic ring. In contrast, the cyclic peptide C(Leu) showed no evidence for close approach of the side chains of Lys3 and Leu9. The cation-pi interaction persists in both DMSO and aqueous solvents. When the disulfide bond in the cyclic peptide C(Phe) was removed, the cation-pi interaction in the acyclic peptide AC(Phe) remained. To test the reliability of the pK(a) criterion for the existence of cation-pi interactions, we determined residue-specific pK(a) values of all four Lys side chains in all three cyclic peptides C(X). While NOE cross-peaks and perturbations of the chemical shifts clearly show the existence of the cation-pi interaction, pK(a) values of Lys3 in C(Tyr) and in C(Phe) differ only marginally from those values of other lysines in these dynamic peptides. Our experimental results with dynamic peptide systems highlight the role of cation-pi interactions in both intermolecular recognition at the protein-protein interface and intramolecular processes such as protein folding.  相似文献   

11.
Specific interactions between cations and proteins have a strong impact on peptide and protein structure. Herein, we shed light on the nature of the underlying interactions, especially regarding effects on the polyamide backbone structure. This was done by comparing the conformational ensembles of model peptides in isolation and in the presence of either Li+ or Na+ by using state‐of‐the‐art density‐functional theory (including van der Waals effects) and gas‐phase infrared spectroscopy. These monovalent cations have a drastic effect on the local backbone conformation of turn‐forming peptides, by disruption of the hydrogen‐bonding networks, thus resulting in severe distortion of the backbone conformations. In fact, Li+ and Na+ can even have different conformational effects on the same peptide. We also assess the predictive power of current approximate density functionals for peptide–cation systems and compare to results with those of established protein force fields as well as high‐level quantum chemistry calculations (CCSD(T)).  相似文献   

12.
A series of fluoroalkylated cyclic λ3-iodanes and their hydrochloride salts was prepared and used in a combination with sodium ascorbate in buffer or aqueous methanol mixtures for radical fluoroalkylation of a range of substituted indoles, pyrroles, tryptophan or its derivatives, and Trp residues in peptides. As demonstrated on several peptides, the aromatic amino acid residues of Trp, Tyr, Phe, and His are targeted with high selectivity to Trp. The functionalization method is biocompatible, mild, rapid, and transition-metal-free. The proteins myoglobin, ubiquitin, and human carbonic anhydrase I were also successfully functionalized.  相似文献   

13.
Intermolecular interactions of adenosine 5'-triphosphate (ATP) with Lysine (Lys) and Mg(2+) were studied in aqueous solution by (1)H and (31)P NMR spectra. In the metal-free system, the N-1 atom of the purine ring of ATP and carboxyl group of Lys are the interaction sites at low pH conditions. With increasing pH, the interaction efficiency between the phosphate group of ATP and the protonated ammonium group of Lys increased significantly, while that with carboxyl group in Lys decreased. In the Mg(2+)-Lys-ATP system, multi-interactions, such as coordination, cations (Mg(2+), NH(3)(+))-π, hydrogen bonding, ion-pairing interactions and electrostatic interactions co-existed. In addition, the recognition of ATP by the amino acid cation (Lys) was significantly promoted by the addition of magnesium ion, which led to the coordination competition between Lys and ATP.  相似文献   

14.
王清萍  张兰  陈国南  林金明 《色谱》2009,27(6):840-844
采用非衍生化毛细管区带电泳直接紫外检测法同时分离测定精氨酸(Arg)、色氨酸(Trp)、苯丙氨酸(Phe)和酪氨酸(Tyr)4种氨基酸,并应用于不同发酵过程的茶叶样品的测定。在分离电压为20 kV、柱温为25 ℃、检测波长为190 nm条件下,以25 mmol/L硼酸-硼砂缓冲溶液(pH 10.0)为运行缓冲液,4种组分在8 min内达到基线分离,Arg、Trp、Phe、Tyr的检出限分别为5.0,1.0,0.3和0.5 mg/L。7次平行测定中,4种组分迁移时间的相对标准偏差(RSD)均小于2.8%,峰电流的RSD均小于4.0%。将所建立的方法用于11种实际茶叶样品中Arg、Trp、Phe和Tyr含量的测定,结果令人满意。该方法可以为茶叶的质量评估提供借鉴。  相似文献   

15.
The binding behavior of an anionic surfactant, sodium dodecyl sulfate (SDS), to a series of L-lysine-containing copolypeptides in aqueous solutions was investigated in relation to the conformational change of copolypeptide-surfactant complexes with the use of potentiometric and spectroscopic techniques. The present results of CD spectra and the binding isotherm of SDS by copolypeptides of opposite charges can lead us to conclude that SDS binds cooperatively to the positively charged side groups of a series of copolypeptides used in this work, resulting in the formation of a micelle-like cluster due to an additional hydrophobic interaction among bound SDS ions. Solid-state properties of the stoichiometric copolypeptide-SDS complexes were also examined by using CD and FT-IR spectroscopies; (Lys, Tyr) (1:1) and (4:1) systems adopt a beta-pleated sheet conformation, while (Lys, Trp) (4:1) and (Lys, Phe) (1:1) systems adopt an alpha-helical conformation. Based on the results of FT-IR spectra, in all cases surfactant alkyl chains of SDS in the solid complexes were in an extended conformation. Copyright 2000 Academic Press.  相似文献   

16.
[reaction: see text] We have investigated the factors that contribute to binding of ATP by a designed 12-residue beta-hairpin peptide, WKWK, and have determined its selectivity for binding to the naturally occurring nucleotide triphosphates. We have previously shown that WKWK creates an ATP binding pocket on one face of the beta-hairpin consisting of two Trp and two Lys residues. Mutation of the two Lys residues on the binding face of the beta-hairpin resulted in a lower affinity, indicating that each is involved in ATP binding and that each residue contributes approximately -1.5 kcal/mol to the energy of complexation. Replacement of either Trp residue of the ATP binding pocket with Phe or Leu destabilizes the complex formed with ATP by approximately 1 kcal/mol, indicating that both Trp residues participate in interactions with ATP. For binding to the nucleotide triphosphates, the order of binding affinity was shown to follow dTTP > GTP > ATP > CTP, with differences in binding energies spanning as much as 1.6 kcal/mol. NMR analysis demonstrates that both aromatic interactions with the Trp side chains and CH-pi interactions between the ribose protons and the Trp residues may contribute significantly to binding. The results from our model system provide useful thermodynamic information regarding protein-nucleic acid interactions that occur at the surface of a beta-sheet.  相似文献   

17.
Ab initio calculations are used to compare the abilities of the aromatic groups of the Phe, Tyr, Trp, and His amino acids (modeled respectively by benzene, phenol, indole, and imidazole) to form H-bonds of three different types. Strongest of all are the conventional H-bonds (e.g., OH..O and OH..N). His forms the strongest such H-bond, followed by Tyr, and then by Trp. Whereas OH..phi bonds formed by the approach of a proton donor to the pi electron cloud above the aromatic system are somewhat weaker, they nonetheless represent an important class of stabilizing interactions. The strengths of H-bonds in this category follow the trend Trp > His > Tyr approximately Phe. CH.O interactions are weaker still, and only those involving His and Trp are strong enough to make significant contributions to protein structure. A protonated residue such as HisH(+) makes for a very powerful proton donor, such that even its CH..O H-bonds are stronger than the conventional H-bonds formed by neutral groups.  相似文献   

18.
The binding affinity of a series of benzhydrylpiperazine δ opioid receptor agonists were pooled and evaluated by using 3D-QSAR and homology modeling/molecular docking methods. Ligand-based CoMFA and CoMSIA 3D-QSAR analyses with 46 compounds were performed on benzhydrylpiperazine analogues by taking the most active compound BW373U86 as the template. The models were generated successfully with q2 value of 0.508 and r2 value of 0.964 for CoMFA, and q2 value of 0.530 and r2 value of 0.927 for CoMSIA. The predictive capabilities of the two models were validated on the test set with R2pred value of 0.720 and 0.814, respectively. The CoMSIA model appeared to work better in this case. A homology model of active form of δ opioid receptor was established by Swiss-Model using a reported crystal structure of active μ opioid receptor as a template, and was further optimized using nanosecond scale molecular dynamics simulation. The most active compound BW373U86 was docked to the active site of δ opioid receptor and the lowest energy binding pose was then used to identify binding residues such as s Gln105, Lys108, Leu125, Asp128, Tyr129, Leu200, Met132, Met199, Lys214, Trp274, Ile277, Ile304 and Tyr308. The docking and 3D-QSAR results showed that hydrogen bond and hydrophobic interactions played major roles in ligand-receptor interactions. Our results highlight that an approach combining structure-based homology modeling/molecular docking and ligand-based 3D-QSAR methods could be useful in designing of new opioid receptor agonists.  相似文献   

19.
The Rose Bengal‐sensitized photooxidations of the dipeptides l ‐tryptophyl‐l ‐phenylalanine (Trp‐Phe), l ‐tryptophyl‐l ‐tyrosine (Trp‐Tyr) and l ‐tryptophyl‐l ‐tryptophan (Trp‐Trp) have been studied in pH 7 water solution using static photolysis and time‐resolved methods. Kinetic results indicate that the tryptophan (Trp) moiety interacts with singlet molecular oxygen (O2(1Δg)) both through chemical reaction and through physical quenching, and that the photooxidations can be compared with those of equimolecular mixtures of the corresponding free amino acids, with minimum, if any, influence of the peptide bond on the chemical reaction. This is not a common behavior in other di‐ and polypeptides of photooxidizable amino acids. The ratio between chemical (kr) and overall (kt) rate constants for the interaction O2(1Δg)‐dipeptide indicates that Trp‐Phe and Trp‐Trp are good candidates to suffer photodynamic action, with krlkt values of 0.72 and 0.60, respectively (0.65 for free Trp). In the case of Trp‐Tyr, a lower krlkt value (0.18) has been found, likely as a result of the high component of physical deactivation of O2(1Δg) by the tyrosine moiety. The analysis of the photooxidation products shows that the main target for O2(1Δg) attack is the Trp group and suggests a much lower accumulation of kynurenine‐type products, as compared with free Trp. This is possibly because of the occurrence of another accepted alternative pathway of oxidation that gives rise to 3a‐oxidized hydrogenated pyrrolo[2,3‐b]indoles.  相似文献   

20.
Interactions in dimers of model alkali metal derivatives M2X2 (M=Li or Na or K; X=H or F, Cl, OH) are studied in the frame of the quantum theory of atoms in molecules (QTAIM) using the interacting quantum atoms approach (IQA). Contrary to opinion prevalent in QTAIM studies, the interaction between two anions linked by a bond path is demonstrated to be strongly repulsive. One may therefore say that a bond path does not necessarily indicate bonding interactions. The interactions between two anions or two cations that are not linked by a bond path are also strongly repulsive. The repulsive anion–anion and cation–cation interactions are outweighed by much stronger attractive anion–cation interactions, and the model molecules are therefore in a stable state. The attractive Ehrenfest forces (calculated in the frame of the QTAIM) acting across interatomic surfaces shared by anions in the dimers do not reflect the repulsive interactions between anions. Probable reasons of this disagreement are discussed. The force exerted on the nucleus and the electrons of a particular atom by the nucleus and the electrons of any another atom in question is proposed. It is assumed that this force unambiguously exposes whether basins of two atoms are attracted or repelled by each other in a polyatomic molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号