首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental data were obtained on the kinetics of formation of calcium zirconate in the system of ZrO2-CaCO3 with a 1:1 molar ratio of the components at 1000, 1100, 1200, and 1300°C. The thermodynamic characteristics of reactions occurring during sintering zirconium dioxide and calcium carbonate were calculated. The changes in specific surface area of zirconium dioxide at heating and its effect on the kinetics of the studied process were investigated. Analysis of experimental data on the degree of CaZrO3 formation was performed using the fundamental equations of the kinetics of solid-state reactions. The best agreement between the calculation and the experiment was obtained for Jander and Zhuravlev-Lesokhin-Tempelman diffusion models.  相似文献   

2.
Establishing the atomic-scale structure of metal-oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)-oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X-ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between −0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm−2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.  相似文献   

3.
Ultra-fine zirconium carbide (ZrC) powders have been synthesized by carbothermal reduction reactions using inorganic precursors zirconium oxychloride (ZrOCl2 · 8H2O) as sources of zirconium and phenolic resin as the carbon source. The reactions were substantially completed at relatively lower temperatures (∼1400 °C/1 h) and the synthesized powders had a small average crystallite size (<200 nm) and a large specific area (54 m2/g). The oxygen content of the powder synthesized at 1400 °C/1 h was less than 1.0 wt%. The thermodynamic change process in the ZrO2–C system and the synthesis mechanism were studied.  相似文献   

4.
The reaction of zirconium n-propoxide in glycol at 300°C yielded microcrystalline tetragonal zirconia (ZrO2). The crystallite size of the product depended on the carbon number of the glycol and increased in the following order (carbon number of glycol): 2<6<4, which suggested that the heterolytic cleavage of O-C bond of gylcoxide formed by transesterification is the prime factor for the formation of the product. In toluene, zirconium isopropoxide also gave tetragonal zirconia at 300°C, and zirconium tert-butoxide decomposed at 200°C yielding amorphous zirconia, while zirconium n-propoxide was stable at 300°C. These results suggest that the reaction in toluene depends on the structure of the alkyl group of the alkoxides. Thus-obtained tetragonal zirconias maintained large surface areas (90–160 m2/g) even after calcination at 500°C.  相似文献   

5.
Zirconium oxide is active for photoreduction of gaseous carbon dioxide to carbon monoxide with hydrogen. A stable surface species arises under the photoreduction of CO2 on zirconium oxide, and it is identified as surface formate by infrared spectroscopy. Adsorbed CO2 is converted to formate by photoreaction with hydrogen. The surface formate is a true reaction intermediate since CO is formed by the photoreaction of formate and CO2; surface formate works as a reductant of carbon dioxide to yield carbon monoxide. The dependence on the wavelength of irradiation light shows that a bulk ZrO2 is not a photoactive species. When ZrO2 adsorbs CO2 a new band appears in photoluminescence excitation spectrum. The photoactive species in the reaction that CO2+H2 yields HCOO is presumably formed by the adsorption of CO2 on ZrO2 surface. Hydrogen molecules play a role to supply an atomic hydrogen. Therefore, methane molecules can also be used as a reductant of carbon dioxide.  相似文献   

6.
Reduction of zirconium dioxide with boron carbide and nanofibrous carbon in argon yielded a highly dispersed powder of zirconium diboride. Characteristics of zirconium diboride powders were examined by various analytical methods. The material obtained is represented by a single phase, zirconium diboride. Powder particles are for the most part aggregated. The average size of particles and aggregates is 10.9–12.9 μm with a wide size distribution. The specific surface area of the samples is 1.8–3.6 m2 g–1. The oxidation of zirconium diboride begins at a temperature of 640°C The optimal synthesis parameters were determined: ZrO2: B4C: C molar ratio of 2: 1: 3 (in accordance with stoichiometry), process temperature 1600–1700°C, synthesis duration 20 min.  相似文献   

7.
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm?2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.  相似文献   

8.
The reactions of cationic zirconium oxide clusters (ZrxOy^+) with ethylene (C2H4) were investigated by using a time-of-flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source. Some hydrogen containing products (ZrO2)xH^+(x=-1-4) were observed after the reaction. The density functional theory calculations indicate that apart from the common oxygen transfer reaction channel, the hydrogen abstraction channel can also occur in (ZrO2)x^++C2H4, which supports that the observed (ZrO2)xH^+ may be due to (ZrO2)x^++C2H4→(ZrO2)xH^++C2H3. The rate constants of different reaction channels were also calculated by Rice-Rarnsberger-Kassel-Marcus theory.  相似文献   

9.
A facile method to produce a hybrid of organic-inorganic nanofiber electrolyte via electrospinning is hereby presented. The incorporation of functionalized zirconium oxide (ZrO2) nanoparticles into poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and complexed with lithium trifluoromethanesulfonate (LiCF3SO3) provided an enhanced optical transmissivity and ionic conductivity. The dependence of the nanofiber's morphology, optical and electrochemical properties on the various ZrO2 loading was studied. Results show that while nanofiller content was increased, the diameter of the nanofibers was reduced. The improved bulk ionic conductivity of the nanofiber electrolyte was at 1.96 × 10−5 S cm−1. Owing to the enhanced dispersibility of the 3-(trimethoxysilyl)propyl methacrylate (MPS) functionalized ZrO2, the optical transmissivity of the nanofiber electrolyte was improved significantly. This new nanofiber composite electrolyte membrane with further development has the potential to be next generation electrolyte for energy efficient windows like electrochromic devices.  相似文献   

10.
In Part II of this two‐part series of papers, optimization of carbonation reaction with sodium metaborate and kinetics of the reaction are studied and compared to the structural properties, which were reported in Part I. This paper presents a comprehensive study on the optimization of reaction conditions and determination of reaction parameters of sodium metaborate (NaBO2) and carbon dioxide (CO2). Both hydrated and dehydrated forms of NaBO2 have high sorption capacities of CO2 up to 400°C. Decomposition of the products starts beyond 400°C and completes at 600°C. The shrinking core model is used to explain the kinetics of the noncatalytic heterogeneous reaction. The reaction progresses in two stages: one is surface reaction controlled and the other is diffusion controlled. The apparent activation energy and preexponential factor for reaction‐controlled and diffusion‐controlled regions are calculated as 11.8 kJ/mol and 3.5 × 106 cm2/min and 18.2 kJ/mol and 6.5 × 10−5 cm2/min, respectively.  相似文献   

11.
Summary On the basis of calorimetric research of selenium dioxide, zirconium dioxide and zirconium diselenite dissolution reactions in the hydrofluoric acid solution under 298 K a standard enthalpy of Zr(SeO3)2 formation reaction from ZrO2 and SeO2 and a standard enthalpy of zirconium diselenite formation have been obtained. The value of enthalpy has been equal to -58.1±3.43 kJ mol-1 in ZrO2(solid)+2SeO2(solid) Zr(SeO3)2(solid) reaction. The standard enthalpy of zirconium diselenite formation is equal to Hf,2980Zr(SeO3)2(solid)= -1603.2±3.8 kJ mol-1. The Hf,2980 Zr(SeO3)2(solid) value has been determined for the first time.  相似文献   

12.
Several non-hydrolytic sol–gel syntheses involving different precursors, oxygen donors, and conditions have been screened aiming to selectively produce mesoporous t-ZrO2 or m-ZrO2 with significant specific surface areas. The in situ water formation was systematically investigated by Karl Fisher titration of the syneresis liquids. XRD and nitrogen physisorption were employed to characterize the structure and texture of the ZrO2 samples. Significant amounts of water were found in several cases, notably in the reactions of Zr(OnPr)4 with ketones (acetone, 2-pentanone, acetophenone), and of ZrCl4 with alcohols (benzyl alcohol, ethanol) or acetone. Conversely, the reactions of Zr(OnPr)4 with acetic anhydride or benzyl alcohol at moderate temperature (200 °C) and of ZrCl4 with diisopropyl ether appear strictly non-hydrolytic. Although reaction time and reaction temperature were also important parameters, the presence of water played a crucial role on the structure of the final zirconia: t-ZrO2 is favored in strictly non-hydrolytic routes, while m-ZrO2 is favored in the presence of significant amounts of water. 1H and 13C NMR analysis of the syneresis liquids allowed us to identify the main reactions responsible for the formation of water and of the oxide network. The morphology of the most interesting ZrO2 samples was further investigated by electron microscopy (SEM, TEM).  相似文献   

13.
The reduction of zirconium oxide with nanofibrous carbon to obtain highly dispersed zirconium carbide was studied. The optimum reduction conditions were determined. The reaction products were identified using modern physicochemical methods (scanning electron microscopy, low-temperature nitrogen adsorption, sedimentation analysis, differential scanning calorimetry). The product obtained appeared to be single-phase zirconium carbide containing no more than 2 wt % impurities. The powder particles are aggregated (mean diameter 14.9–15.0 μm, specific surface area 1.5–1.7 m2 g–1). The oxidation of zirconium carbide starts at 480°С and is complete at 800°С.  相似文献   

14.
以ZrO(NO32·2H2O为前驱体对多壁碳纳米管(MWCNTs)进行了改性并负载MnOx制备了MnOx/ZrO2/MWCNTs 催化剂. 考察了Zr 对催化剂低温选择性催化还原(SCR)反应活性的影响,并通过多种分析手段对催化剂的结构进行了表征. 结果表明Zr 的添加对催化剂的低温SCR活性具有显著的促进作用,当Zr 负载量为30%时,催化剂活性最佳. X射线衍射(XRD)、拉曼(Raman)光谱、透射电镜(TEM)、N2吸附-脱附的表征结果分析表明,适量的Zr 改性促进了MnOx在载体表面的分散,增强金属氧化物与MWCNTs 之间的作用,也能增加催化剂的比表面积、孔容和孔径. X 射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)和NH3程序升温脱附(NH3-TPD)的分析结果则显示,Zr 能提高催化剂表面化学吸附氧浓度,促进Mn3+转化为Mn4+,从而使催化剂表面的活性位点增多,氧化还原能力增强,同时还提高了催化剂表面酸性位点的数量和强度,促进了NH3的吸附,是MnOx/ZrO2/MWCNTs 催化剂低温SCR活性提高的主要原因.  相似文献   

15.
Combustion of dilute propane (0.9 mol%) over Mn-doped ZrO2 catalysts prepared using different precipitating agents (viz. TMAOH, TEAOH, TPAOH, TBAOH and NH4OH), having different Mn/Zr ratios (0.05—0.67) and calcined at different temperatures (500—800°C), has been thoroughly investigated at different temperatures (300—500°C) and space velocities (25,000–100,000 cm3 g−1 h−1) for controlling propane emissions from LPG-fuelled vehicles. Mn-doped ZrO2 catalyst shows high propane combustion activity, particularly when its ZrO2 is in the cubic form, when its Mn/Zr ratio is close to 0.2 and when it is prepared using TMAOH as a precipitating agent and calcined at 500—600°C. Pulse reaction of propane in the absence of free-O2 over Mn-doped ZrO2 (cubic) and Mn-impregnated ZrO2 (monoclinic) catalysts has also been investigated for studying the relative reactivity and mobility of the lattice oxygen of the two catalysts. Both reactivity and mobility of the lattice oxygen of Mn-doped ZrO2 are found to be much higher than that of Mnimpregnated ZrO2. Propane combustion over Mn-doped ZrO2 catalyst involves a redox mechanism  相似文献   

16.
Nanocrystalline zirconium(IV) oxide (nc‐ZrO2) possessing high surface area was synthesized by a low temperature eco‐friendly solution combustion method using a new organic fuel alanine. The powder XRD, SEM and surface area measurements were carried out for characterization of nc‐ZrO2. The powder XRD results revealed that, the nc‐ZrO2 has the pure tetragonal phase. The crystallite size calculated by Scherrer's formula and BET surface area were found to be ca. 53–57 nm and ca. 275 m2/g, respectively. SEM micrograph exhibited the macroporous nature of the powder. nc‐ZrO2 has been employed as a catalyst for the solvent‐free synthesis of 3,4‐dihydro‐ pyrimidin‐2‐ones (DHPMs) by a microwave (MW) assisted one‐pot, multicomponent Biginelli condensation reaction of araldehydes, ethylacetoacetate and urea or thiourea. DHPMs are obtained in good to excellent yields (85%–96%) under this reaction condition within short interval of time (10–20 min).  相似文献   

17.
The effect of substrate temperature on the direct current magnetron-sputtered zirconium oxide (ZrO2) dielectric films was investigated. Stoichiometric of the ZrO2 thin films was obtained at an oxygen partial pressure of 4.0 × 10−2 Pa. X-ray diffraction studies revealed that the crystallite size in the layer was increased from 4.8 to 16.1 nm with increase of substrate temperature from 303 to 673 K. Metal-oxide-semiconductor devices were fabricated on ZrO2/Si stacks with Al gate electrode. The dielectric properties of ZrO2 layer and interface quality at ZrO2/Si were significantly influenced by the substrate temperature. The dielectric constant increased from 15 to 25, and the leakage current density decreased from 0.12 × 10−7 to 0.64 × 10−9 A cm−2 with the increase of substrate temperature from 303 to 673 K.  相似文献   

18.
The properties of sol–gel derived ZrO2 thin films heated via a novel method of rapid thermal annealing process were studied. We investigated the effects of heat-treatment schedules with different ramp rates on the refractive index and thickness of ZrO2 thin films as well. By controlling the heating treatment parameter, the refractive index of the ZrO2 coatings can be adjusted from 1.69 up to 1.9 continuously, which can meet different requirement for high reflectance well. The thickness of crack-free ZrO2 coatings can be easily controlled by employing different experimental parameters. The result of X-ray diffraction shows that as-deposited film is amorphous, and it remains stable up to the heating temperature of 400 °C. However, it begins to crystallize as the temperature increases further attaining 500 °C. Meanwhile, the surface morphology was evaluated by atomic force microscopy and the result shows that the surface of the ZrO2 coating is smooth and uniform with root means square of 0.63 nm for the measured area of 5 × 5 μm. As a typical example, ZrO2 thin films with refractive index of 1.9 are chosen for highly reflective coatings. Nearly full reflective mirror at 1,064 nm was fabricated on fused silica substrate. The laser induced damage thresholds of 22 J/cm2 (1,064 nm, 10 ns) and 14.6 J/cm2 (1,064 nm, 10 ns) are obtained for ZrO2 coating and ZrO2/SiO2 multilayer coatings respectively.  相似文献   

19.
Zirconia powders are prepared by reaction of a zirconium precursor with an alkali metal nitrate. The major part of the reactions takes place before the melting points and then the reactions go slowly to completion at 450°C in the molten salts. The roles of the precursor and the alkali metal ion are discussed considering the reaction between two precursors, octahydrated zirconium oxychloride and zirconium tetrachloride, and two nitrates, LiNO3 and NaNO3, and some resulting physico-chemical differences. The obtained zirconia powders contain very small amounts of alkali metal ions which act as stabilizing agent. Their effect on the balance tetragonal-monoclinic ZrO2 depends upon the homogeneity of their distribution which is related to their ability to diffuse inside the bulk of particles and their polarizing power when located mainly on the surface.  相似文献   

20.
运用BET、XRD、FT-Raman以及微量吸附量热等手段对由浸渍三种晶型氧化锆及其前体氢氧化锆制备的负载钨催化剂的结构及其表面酸性进行了研究。结果表明起始原料和制备条件对氧化锆的结构有显著影响。浸渍在氢氧化锆上的钨物种会使氢氧化锆转变为四方晶型氧化锆。但浸渍于氧化锆上的钨物种使氧化锆发生晶型转变相对较难。负载钨催化剂表面强酸位的形成与载体晶型、表面钨物种WOx以及WOx与载体氧化锆之间的相互作用有关。催化剂上的强酸位可因残留的Na+离子所毒化或阻抑。少量Y3+离子对表面酸性则无明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号