共查询到15条相似文献,搜索用时 0 毫秒
1.
Cong Yu Zhengdong Guo Lifeng Yang Jiyu Cui Sen Chen Yawen Bo Xian Suo Qihan Gong Shang Zhang Prof. Xili Cui Shengbao He Prof. Huabin Xing 《Angewandte Chemie (International ed. in English)》2023,62(16):e202218027
Adsorptive separation is an energy-efficient alternative, but its advancement has been hindered by the challenge of industrially potential adsorbents development. Herein, a novel ultra-microporous metal-organic framework ZU-901 is designed that satisfies the basic criteria raised by ethylene/ethane (C2H4/C2H6) pressure swing adsorption (PSA). ZU-901 exhibits an “S” shaped C2H4 curve with high sorbent selection parameter (65) and could be mildly regenerated. Through green aqueous-phase synthesis, ZU-901 is easily scalable with 99 % yield, and it is stable in water, acid, basic solutions and cycling breakthrough experiments. Polymer-grade C2H4 (99.51 %) could be obtained via a simulating two-bed PSA process, and the corresponding energy consumption is only 1/10 of that of simulating cryogenic distillation. Our work has demonstrated the great potential of pore engineering in designing porous materials with desired adsorption and desorption behavior to implement an efficient PSA process. 相似文献
2.
Feng Xie Liang Yu Prof. Dr. Hao Wang Prof. Dr. Jing Li 《Angewandte Chemie (International ed. in English)》2023,62(20):e202300722
The separation of alkane isomers is an important yet challenging process in the petrochemical industry. Being a crucial step to produce premium gasoline components as well as optimum ethylene feed, the current industrial separation by distillation is extremely energy intensive. Adsorptive separation based on zeolite is limited by insufficient adsorption capacity. Metal-organic frameworks (MOFs) hold enormous promise as alternative adsorbents due to their diverse structural tunability and exceptional porosity. Precise control of their pore geometry/dimensions has led to superior performance. In this minireview, we highlight the recent progresses in developing MOFs for the separation of C6 alkane isomers. Representative MOFs are reviewed based on their separation mechanisms. Emphasis is put on the material design rationale for achieving optimal separation capability. Finally, we briefly discuss the existing challenges, possible solutions, and future directions of this important field. 相似文献
3.
Shubo Geng Hang Xu Chun-Shuai Cao Prof. Tony Pham Prof. Bin Zhao Prof. Zhenjie Zhang 《Angewandte Chemie (International ed. in English)》2023,62(32):e202305390
Adsorption-based removal of carbon dioxide (CO2) from gas mixtures has demonstrated great potential for solving energy security and environmental sustainability challenges. However, due to similar physicochemical properties between CO2 and other gases as well as the co-adsorption behavior, the selectivity of CO2 is severely limited in currently reported CO2-selective sorbents. To address the challenge, we create a bioinspired design strategy and report a robust, microporous metal–organic framework (MOF) with unprecedented [Mn86] nanocages. Attributed to the existence of unique enzyme-like confined pockets, strong coordination interactions and dipole-dipole interactions are generated for CO2 molecules, resulting in only CO2 molecules fitting in the pocket while other gas molecules are prohibited. Thus, this MOF can selectively remove CO2 from various gas mixtures and show record-high selectivities of CO2/CH4 and CO2/N2 mixtures. Highly efficient CO2/C2H2, CO2/CH4, and CO2/N2 separations are achieved, as verified by experimental breakthrough tests. This work paves a new avenue for the fabrication of adsorbents with high CO2 selectivity and provides important guidance for designing highly effective adsorbents for gas separation. 相似文献
4.
Lu Wang Wenjuan Xue Hejin Zhu Xiangyu Guo Hongliang Huang Prof. Chongli Zhong 《Angewandte Chemie (International ed. in English)》2023,62(11):e202218596
The separation of isomeric C4 paraffins is an important task in the petrochemical industry, while current adsorbents undergo a trade-off relationship between selectivity and adsorption capacity. In this work, the pore aperture of a cage-like Zn-bzc (bzc=pyrazole-4-carboxylic acid) is tuned by the stepwise installation methyl groups on its narrow aperture to achieve both molecular-sieving separation and high n-C4H10 uptake. Notably, the resulting Zn-bzc-2CH3 (bzc-2CH3=3,5-dimethylpyrazole-4-carboxylic acid) can sensitively capture n-C4H10 and exclude iso-C4H10, affording molecular-sieving for n-C4H10/iso-C4H10 separation and high n-C4H10 adsorption capacity (54.3 cm3 g−1). Breakthrough tests prove n-C4H10/iso-C4H10 can be efficiently separated and high-purity iso-C4H10 (99.99 %) can be collected. Importantly, the hydrophobic microenvironment created by the introduced methyl groups greatly improves the stability of Zn-bzc and significantly eliminates the negative effect of water vapor on gas separation under humid conditions, indicating Zn-bzc-2CH3 is a new benchmark adsorbent for n-C4H10/iso-C4H10 separation. 相似文献
5.
Shuyi Jiang Hao Sun Ke Gong Xin Huang Yuhao Zhu Prof. Dr. Xiao Feng Prof. Dr. Jing Xie Prof. Dr. Jingyao Liu Prof. Dr. Bo Wang 《Angewandte Chemie (International ed. in English)》2023,62(22):e202302036
Developing porous sorbents represents a potential energy-efficient way for industrial gas separation. However, a bottleneck for reducing the energy penalty is the trade-off between dynamic adsorption capacity and selectivity. Herein, we showed this problem can be overcome by modulating the kinetic and thermodynamic separation behaviours in metal–organic frameworks for sieving 2-butene geometric isomers, which are desired for upgrading the raffinates to higher value-added end products. We found that the iron-triazolate framework can realize the selective shape screening of 2-butene isomers assisted by electrostatic interactions at the pore apertures. Further introducing uncoordinated N binding sites by ligand substitution lowered the gas diffusion barrier and greatly boosted the dynamic separation performance. In breakthrough tests under ambient conditions, trans-2-C4H8 can be efficiently separated from cis-2-C4H8 with a record capacity of 2.10 mmol g−1 with high dynamic selectivity of 2.39. 相似文献
6.
Michael R. Smith Clare B. Martin Sonia Arumuganainar Ari Gilman Bruce E. Koel Michele L. Sarazen 《Angewandte Chemie (International ed. in English)》2023,62(8):e202218208
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs. 相似文献
7.
Active Sites Decorated Nonpolar Pore-Based MOF for One-step Acquisition of C2H4 and Recovery of C3H6
Dr. Gang-Ding Wang Dr. Yong-Zhi Li Dr. Wen-Juan Shi Prof. Lei Hou Prof. Yao-Yu Wang Prof. Zhonghua Zhu 《Angewandte Chemie (International ed. in English)》2023,62(43):e202311654
Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2H4 purification from C2H6 or C3H6 mixtures as well as recovery of C3H6 from C2H6/C3H6/C2H4 mixtures. The MOF exhibits the favorable C2H6 and C3H6 uptakes (>100 cm3 g−1 at 298 K under 100 kPa) as well as selective adsorption of C2H6 and C3H6 over C2H4. The C3H6- and C2H6-selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3H6 or C2H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg−1 and 15.4 L kg−1 of high-purity (≥99.9 %) C2H4 from C3H6/C2H4 and C2H6/C2H4 mixtures, but also provide a large high-purity (≥99.5 %) C3H6 recovery capacity of 60.1 L kg−1 from C3H6/C2H4 mixtures. More importantly, the high-purity C3H6 (≥99.5 %) and C2H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg−1 can be simultaneously obtained from C2H6/C3H6/C2H4 mixtures through a single adsorption/desorption cycle. 相似文献
8.
Xi Su Zhiye Zhong Dr. Xiaoli Yan Dr. Ting Zhang Chuanzhe Wang Dr. Yi-Xuan Wang Prof. Gang Xu Prof. Long Chen 《Angewandte Chemie (International ed. in English)》2023,62(22):e202302645
As an emerging class of promising porous materials, the development of two-dimensional conductive metal organic frameworks (2D c-MOFs) is hampered by the few categories and tedious synthesis of the specific ligands. Herein, we developed a nonplanar hexahydroxyl-functionalized Salphen ligand (6OH-Salphen) through a facile two-step synthesis, which was further applied to construct layered 2D c-MOFs through in situ one pot synthesis based on the synergistic metal binding effect of the N2O2 pocket of Salphen. Interestingly, the C2v-symmetry of ligand endows Cu-Salphen-MOF with periodically heterogeneous pore structures. Benefitting from the higher metal density and shorter in-plane metal-metal distance, Cu-Salphen-MOF showcased excellent NO2 sensing performance with good sensitivity, selectivity and reversibility. The current work opens up a new avenue to construct 2D c-MOF directly from nonplanar ligands, which greatly simplifies the synthesis and provides new possibilities for preparing different topological 2D c-MOF based functional materials. 相似文献
9.
Dr. Yingxiang Ye Yi Xie Dr. Yanshu Shi Dr. Lingshan Gong Dr. Joshua Phipps Prof. Abdullah M. Al-Enizi Prof. Ayman Nafady Prof. Banglin Chen Prof. Shengqian Ma 《Angewandte Chemie (International ed. in English)》2023,62(21):e202302564
Developing adsorptive separation processes based on C2H6-selective sorbents to replace energy-intensive cryogenic distillation is a promising alternative for C2H4 purification from C2H4/C2H6 mixtures, which however remains challenging. During our studies on two isostructural metal–organic frameworks ( Ni-MOF 1 and Ni-MOF 2 ), we found that Ni-MOF 2 exhibited significantly higher performance for C2H6/C2H4 separation than Ni-MOF-1 , as clearly established by gas sorption isotherms and breakthrough experiments. Density-Functional Theory (DFT) studies showed that the unblocked unique aromatic pore surfaces within Ni-MOF 2 induce more and stronger C−H⋅⋅⋅π with C2H6 over C2H4 while the suitable pore spaces enforce its high C2H6 uptake capacity, featuring Ni-MOF 2 as one of the best porous materials for this very important gas separation. It generates 12 L kg−1 of polymer-grade C2H4 product from equimolar C2H6/C2H4 mixtures at ambient conditions. 相似文献
10.
Yuecheng Wang Dr. Yujie Ban Ziyi Hu Prof. Dr. Weishen Yang 《Angewandte Chemie (International ed. in English)》2023,62(16):e202302181
Highly compact metal–organic framework (MOF) membranes offer hope for the ambition to cope with challenging separation scenarios with industrial implications. A continuous layer of layered double hydroxide (LDH) nanoflakes on an alumina support as a template triggered a chemical self-conversion to a MIL-53 membrane, with approximately 8 hexagonal lattices (LDH) traded for 1 orthorhombic lattice (MIL-53). With the sacrifice of the template, the availability of Al nutrients from the alumina support was dynamically regulated, which resulted in synergy for producing membranes with highly compact architecture. The membrane can realize nearly complete dewatering from formic acid and acetic acid solutions, respectively, and maintain stability in a continuous pervaporation over 200 h. This is the first success in directly applying a pure MOF membrane to such a corrosive chemical environment (lowest pH value of 0.81). The energy consumption is saved by up to 77 % when compared with the traditional distillation. 相似文献
11.
Dr. Changhua Song Dr. Fang Zheng Dr. Ying Liu Prof. Qiwei Yang Prof. Zhiguo Zhang Prof. Qilong Ren Prof. Zongbi Bao 《Angewandte Chemie (International ed. in English)》2023,62(51):e202313855
The one-step purification of ethylene (C2H4) from mixtures containing ethane (C2H6) and acetylene (C2H2) is an industrially important yet challenging process. In this work, we present a site-engineering strategy aimed at manipulating the spatial distribution of binding sites within a confined pore space. We realized successfully by incorporating nitrogen-containing heterocycles, such as indole-5-carboxylic acid (Ind), benzimidazole-5-carboxylic acid (Bzz), and indazole-5-carboxylic acid (Izo), into the robust MOF-808 platform via post-synthetic modification. The resulting functionalized materials, namely MOF-808-Ind, MOF-808-Bzz, and MOF-808-Izo, demonstrated significantly improved selectivity for C2H2 and C2H6 over C2H4. MOF-808-Bzz with two uniformly distributed nitrogen binding sites gave the optimal geometry for selective ethane trapping through multiple strong C−H⋅⋅⋅N hydrogen bonds, leading to the highest C2H2/C2H4 and C2H6/C2H4 combined selectivities among known MOFs. Column breakthrough experiments validated its ability to purify C2H4 from ternary C2H2/C2H4/C2H6 mixtures in a single step. 相似文献
12.
Rong Zhang Hu Hong Xinghui Liu Shaoce Zhang Chuan Li Huilin Cui Yanbo Wang Jiahua Liu Yue Hou Pei Li Zhaodong Huang Ying Guo Chunyi Zhi 《Angewandte Chemie (International ed. in English)》2023,62(48):e202309930
Metal–organic framework-based materials are promising single-site catalysts for electrocatalytic nitrate (NO3−) reduction to value-added ammonia (NH3) on account of well-defined structures and functional tunability but still lack a molecular-level understanding for designing the high-efficient catalysts. Here, we proposed a molecular engineering strategy to enhance electrochemical NO3−-to-NH3 conversion by introducing the carbonyl groups into 1,2,4,5-tetraaminobenzene (BTA) based metal-organic polymer to precisely modulate the electronic state of metal centers. Due to the electron-withdrawing properties of the carbonyl group, metal centers can be converted to an electron-deficient state, fascinating the NO3− adsorption and promoting continuous hydrogenation reactions to produce NH3. Compared to CuBTA with a low NO3−-to-NH3 conversion efficiency of 85.1 %, quinone group functionalization endows the resulting copper tetraminobenzoquinone (CuTABQ) distinguished performance with a much higher NH3 FE of 97.7 %. This molecular engineering strategy is also universal, as verified by the improved NO3−-to-NH3 conversion performance on different metal centers, including Co and Ni. Furthermore, the assembled rechargeable Zn−NO3− battery based on CuTABQ cathode can deliver a high power density of 12.3 mW cm−2. This work provides advanced insights into the rational design of metal complex catalysts through the molecular-level regulation for NO3− electroreduction to value-added NH3. 相似文献
13.
Pei Chen Xi Su Chuanzhe Wang Dr. Guang Zhang Dr. Ting Zhang Prof. Gang Xu Prof. Long Chen 《Angewandte Chemie (International ed. in English)》2023,62(40):e202306224
The emergence of two-dimensional conjugated metal–organic frameworks (2D c-MOFs) with pronounced electrical properties (e.g., high conductivity) has provided a novel platform for efficient energy storage, sensing, and electrocatalysis. Nevertheless, the limited availability of suitable ligands restricts the number of available types of 2D c-MOFs, especially those with large pore apertures and high surface areas are rare. Herein, we develop two new 2D c-MOFs (HIOTP-M, M=Ni, Cu) employing a large p-π conjugated ligand of hexaamino-triphenyleno[2,3-b:6,7-b′:10,11-b′′]tris[1,4]benzodioxin (HAOTP). Among the reported 2D c-MOFs, HIOTP-Ni exhibits the largest pore size of 3.3 nm and one of the highest surface areas (up to 1300 m2 g−1). As an exemplary application, HIOTP-Ni has been used as a chemiresistive sensing material and displays high selective response (405 %) and a rapid response (1.69 min) towards 10 ppm NO2 gas. This work demonstrates significant correlation linking the pore aperture of 2D c-MOFs to their sensing performance. 相似文献
14.
Yun‐Lei Peng Chaohui He Tony Pham Ting Wang Pengfei Li Rajamani Krishna Katherine A. Forrest Adam Hogan Shanelle Suepaul Brian Space Ming Fang Yao Chen Michael J. Zaworotko Jinping Li Libo Li Zhenjie Zhang Peng Cheng Banglin Chen 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(30):10315-10320
Simultaneous removal of trace amounts of propyne and propadiene from propylene is an important but challenging industrial process. We report herein a class of microporous metal–organic frameworks ( NKMOF‐1‐M ) with exceptional water stability and remarkably high uptakes for both propyne and propadiene at low pressures. NKMOF‐1‐M separated a ternary propyne/propadiene/propylene (0.5 : 0.5 : 99.0) mixture with the highest reported selectivity for the production of polymer‐grade propylene (99.996 %) at ambient temperature, as attributed to its strong binding affinity for propyne and propadiene over propylene. Moreover, we were able to visualize propyne and propadiene molecules in the single‐crystal structure of NKMOF‐1‐M through a convenient approach under ambient conditions, which helped to precisely understand the binding sites and affinity for propyne and propadiene. These results provide important guidance on using ultramicroporous MOFs as physisorbent materials. 相似文献
15.
Rajesh Das D. Muthukumar Dr. Renjith S. Pillai Prof. C. Mallaiah Nagaraja 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(72):17445-17454
The development of efficient heterogeneous catalysts suitable for carbon capture and utilization (CCU) under mild conditions is a promising step towards mitigating the growing concentration of CO2 in the atmosphere. Herein, we report the construction of a hydrogen-bonded 3D framework, {[Zn(hfipbba)(MA)]⋅3 DMF}n (hfipbba=4,4′-(hexaflouroisopropylene)bis(benzoic acid)) (HbMOF 1 ) utilizing ZnII center, a partially fluorinated, long-chain dicarboxylate ligand (hfipbba), and an amine-rich melamine (MA) co-ligand. Interestingly, the framework possesses two types of 1D channels decorated with CO2-philic (−NH2 and −CF3) groups that promote the highly selective CO2 adsorption by the framework, which was supported by computational simulations. Further, the synergistic involvement of both Lewis acidic and basic sites exposed in the confined 1D channels along with high thermal and chemical stability rendered HbMOF 1 a good heterogeneous catalyst for the highly efficient fixation of CO2 in a reaction with terminal/internal epoxides at mild conditions (RT and 1 bar CO2). Moreover, in-depth theoretical studies were carried out using periodic DFT to obtain the relative energies for each stage involved in the catalytic reaction and an insight mechanistic details of the reaction is presented. Overall, this work represents a rare demonstration of rational design of a porous ZnII MOF incorporating multiple functional sites suitable for highly efficient fixation of CO2 with terminal/internal epoxides at mild conditions supported by comprehensive theoretical studies. 相似文献