首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The aryl(imino)stannylene MesTer[N(IDipp)]Sn could be obtained by treating NHILi (NHI=N(IDipp), IDipp=C[N-(2,6-iPr2C6H3)CH]2) with MesTerSnCl (MesTer=2,6-Mes2C6H3) and offers a unique reactivity pattern compared to conventional single site tetrylene catalyzed CO2 reduction reactions. The Sn(II) center, stabilized by the NHI ligand enabled the sequestration and valorization of CO2 to C1 feedstock stoichiometrically, as well as catalytically, utilizing HBpin (pin=pinacolato) as reductant. The experimental comparison with aryl(amido)stannylene MesTer(NPh2)Sn and aryl(phosphinidene)stannylene MesTer[P(IDipp)]Sn, as well as computational analysis, rationalize the electronic features and key role of the NHI ligand in the CO2 reduction process. In case of the phosphorus congener, Sn−P bonding with pronounced double-bond character is obtained, which prevents swift dissociation, thus preventing CO2 uptake. Instead, hard/soft mismatch between tin and the NHI induces zwitterionic and single-bond character, switching on the intermediate dissociation of Sn(II)/NHI, followed by a tin hydride mediated reduction step, and thus allows for efficient catalysis under mild conditions.  相似文献   

2.
    
The activation of dinitrogen (N2) by transition metals is central to the highly energy intensive, heterogeneous Haber–Bosch process. Considerable progress has been made towards more sustainable homogeneous activations of N2 with d- and f-block metals, though little success has been had with main group metals. Here we report that the reduction of a bulky magnesium(II) amide [(TCHPNON)Mg] (TCHPNON=4,5-bis(2,4,6-tricyclohexylanilido)-2,7-diethyl-9,9-dimethyl-xanthene) with 5 % w/w K/KI yields the magnesium-N2 complex [{K(TCHPNON)Mg}2(μ-N2)]. DFT calculations and experimental data show that the dinitrogen unit in the complex has been reduced to the N22− dianion, via a transient anionic magnesium(I) radical. The compound readily reductively activates CO, H2 and C2H4, in reactions in which it acts as a masked dimagnesium(I) diradical.  相似文献   

3.
Due to consumption of more than 2% of the world‘s annual energy supply by Haber–Bosch process and the strongest triple bond (N≡N) in nature, directly coupling N2 with small molecules is particularly important and challenging, let alone in a catalytic fashion. Here we first demonstrate that a NNN-type pincer phosphorus complex could act as a catalyst to couple dinitrogen with a series of small molecules including carbon dioxide, formaldehyde, N-ethylidenemethylamine, and acetonitrile in the presence of diborane(4) under a mild condition by theoretical calculations. N2 fixation proceeds via a stepwise mechanism involving initial N2 activation by diborane(4), followed by intramolecular isomerization to a key intermediate (zwitterion). Such a zwitterion can be used to couple a series of small molecules with activation barriers of 23.5–25.2 kcal mol−1. All these findings could be particularly useful for main group chemistry aimed at N2 activation.  相似文献   

4.
    
Donor‐stabilised silyliumylidene ions, from the parent [R?Si:]+, are a class of low‐valent silicon species which have received increasing research interest in the last several years. This interest began in the fundamental synthesis and characterisation of these compounds, but has since started to include more investigation into their further reactivity after several stable NHC‐stabilised silyliumylidene ions were reported. This personal account briefly discusses the history of the still‐young field of silyliumylidene ions followed by a more detailed discussion of published work from our group on the further development of silyliumylidene chemistry over the last four years.  相似文献   

5.
    
Hole transport materials (HTMs) with high hole mobility, good band alignment and ease of fabrication are highly desirable for perovskite solar cells (PSCs). Here, we designed and synthesized novel organic HTMs, named T3, which can be synthesized in high yields with commercially available materials, featuring a substituted pyrrole core and triphenylamine peripheral arms. The capability of functionalization in the final synthetic step provides an efficient way to obtain a variety of T3-based HTMs with tunable energy levels and other properties. Among them, fluorine-substituted T3 (T3-F) exhibits the best band alignment and hole extraction properties, leading to PSCs with outstanding PCEs of 24.85 % and 24.03 % (certified 23.46 %) for aperture areas of 0.1 and 1 cm2, respectively. The simple structure and tunable performance of T3 can inspire further optimization for efficient PSCs.  相似文献   

6.
Circularly polarized luminescence (CPL) has attracted attention as a next-generation light signal because of its carrying more information compared with normal and linearly polarized lights as well as its potential wide application in information fields. Recently, much attention has been paid to small organic molecules-based CPL emitters because of easy synthesis, fine structural modification at molecular level, and tunable wide range emission wavelength. This review highlights the development of small organic molecules-based CPL emitters in the past 5 years (2017–2021). The progress suggests that small organic molecules-based CPL emitters provide a simple and efficient way to generate CPL.  相似文献   

7.
    
Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4W4Fe13S12 , displaying a Fe13 core with M−M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4W4Fe13S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.  相似文献   

8.
    
Small molecule targeting of RNA has emerged as a new frontier in medicinal chemistry, but compared to the protein targeting literature our understanding of chemical matter that binds to RNA is limited. In this study, we reported R epository O f BI nders to N ucleic acids (ROBIN), a new library of nucleic acid binders identified by small molecule microarray (SMM) screening. The complete results of 36 individual nucleic acid SMM screens against a library of 24 572 small molecules were reported (including a total of 1 627 072 interactions assayed). A set of 2 003 RNA-binding small molecules was identified, representing the largest fully public, experimentally derived library of its kind to date. Machine learning was used to develop highly predictive and interpretable models to characterize RNA-binding molecules. This work demonstrates that machine learning algorithms applied to experimentally derived sets of RNA binders are a powerful method to inform RNA-targeted chemical space.  相似文献   

9.
    
The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.  相似文献   

10.

Computational chemistry and molecular modeling sites have proliferated on the Internet's world wide web. This paper provides present links to some of the more most useful ones for small organic molecule modeling, and offering free resources.  相似文献   

11.
    
Two C2H6-selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C2H6/C2H4) under humid conditions to produce polymer-grade pure C2H4. Experimental results reveal that these two MOFs not only adsorb a high amount of C2H6 but also display good C2H6/C2H4 selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C2H6/C2H4 under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C2H6/C2H4 under humid conditions. Moreover, the affinity sites and their static adsorption energies were successfully revealed by single crystal data and computation studies. Adsorbents described in this work can be used to address major chemical industrial challenges.  相似文献   

12.
The self-association of (R)-, (S)- and (RS)-butan-2-ol in their carbon tetrachloride solutions was studied through the mid-infrared (mid-IR) and near-infrared (NIR) spectroscopic observations. The mid-IR and NIR spectra for each chiral butan-2-ol were compared with those for the racemic (RS)-butan-2-ol. Although it has been reported that the hydrogen bonding among the chiral butan-2-ol molecules was stronger than that among the racemic ones, any distinguishable differences between the chiral and the racemic butan-2-ol in CCl4 solution or even in their pure liquid state were not observed both in their mid-IR and NIR spectra. A superior analytical method, assuming a successive association process for the alcohol molecules, was applied to the analysis of the sharp band at 3630 cm−1 (the OH-stretching vibration mode attributed to free OH-monomer) for the (R)-, (S)- or (RS)-butan-2-ol in CCl4. The mean association number N for each alcohol increased with increasing in concentration until 0.12 mol dm−3 and then becomes constant (about four). On the other hand, Zanker's plotting method, assuming an equilibrium between monomers and only one kind of polymer species, was also applied to the analysis of the above spectroscopic results; the association number n evaluated from the Zanker's method fairly agreed with the N value in the concentration region of 0.12–0.60 mol dm−3.  相似文献   

13.
    
Most multi-resonance (MR) induced thermally activated delayed fluorescence (TADF) emitters generally exhibit strong aggregation and relatively worse solubility due to their rigid and planar molecule structures, which is highly undesirable for solution-processible devices. Herein, a simple but feasible approach for solution-processible small-molecule MR-TADF emitters is developed by incorporating two MR-TADF units onto carbazole bridge bearing long alkyl chains. The obtained emitters demonstrate supreme film-forming capability and narrowband emissions with full-width at half-maximums (FWHMs) of 22 nm. The resulting solution-processed narrowband electroluminescent devices achieve maximum external quantum efficiency of 27.1 %, which represents the highest efficiency among the solution-processed OLEDs based on MR-TADF emitters. This simple approach reveals great potential of developing solution-processible emitters for rigid and planar molecular structures.  相似文献   

14.
Enantiomerically pure cis- and trans-myrtanylstannanes cis-MyrSnPh3 (1), trans-MyrSnPh3 (2), cis-MyrSnPh2Cl (3), trans-MyrSnPh2Cl (4), cis-MyrSnPhCl2 (5), trans-MyrSnPhCl2 (6), cis-MyrSnCl3 (7), trans-MyrSnCl3 (8) were synthesized and fully characterized by 1H, 13C and 119Sn NMR spectroscopy. The molecular structures of 1, 3, 6, 7, and [trans-MyrSn(OH)Cl2 · H2O]2 (8a) a hydrolysis product of 8, were determined by X-ray crystallography.  相似文献   

15.
Collisions between hot H atoms and CO2 molecules were studied experimentally by time-resolved Fourier transform infrared emission spectroscopy. H atoms with three translational energies, 174.7, 241.0 and 306.2 kJ/mol respectively, were generated by UV laser photolysis to initiate a chemical reaction of H+CO2!OH+CO. Vibrationally excited CO (v≤2) was observed in the spectrum, where CO was the product of the reaction. The highly efficient T-V energy transfer from the hot H atoms to the CO2 was verified too. The highest vibrational level of v=4 in CO2 (v≤3) was found. Rate ratio of the chemical reaction to the energy transfer was estimated as 10.  相似文献   

16.
Chemistry judging by its applications, physics according to its methods, and heavily reliant upon the tools of mathematics—that is what makes theoretical chemistry. And yet that is where its strength lies—in the variety of these sciences. It is quite natural that, in answer to specific problems, results and methods can sometimes be developed whose scope extends far beyond the original application. Rather it is a mark of quality if consequences can be found in chemistry and physics and the pathway leads via new mathematical procedures and concepts. Regrettably, any publication aiming to present such aspects will usually encounter little resonance since the linguistic confusion in science, its disciplines, and subdisciplines, lies like a veil over our understanding. The author nevertheless wishes to attempt to present, in a series of articles, results of research into chemical themes in a manner designed to appeal to the interest of chemists, without neglecting interdisciplinary aspects. All that is required to understand the argumentation is a lively interest. The first two articles are concerned with the chirality of molecules, and in particular with questions relating to the chirality phenomenon of molecules in the framework of molecular classes. In view of the algebraic nature of the mathematical methods adopted, it is not surprising that precise statements result. It appears of primary interest to establish the degree to which such statements can be considered valid for molecular models or molecules themselves.  相似文献   

17.
A photon as a particle has an energy and a momentum. In a matter-photon interaction, the matter and photons may exchange their momenta observing the momentum conservation law. The consequence of the momentum transfer from a photon to a matter particle is a mechanical force exerted on the particle. Several separation methods based on this force of light are reviewed. Photophoresis separations for micron-sized particles and optical force chromatography for chemical-sized molecules are discussed.  相似文献   

18.
    
Juvenile myelomonocytic leukaemia, an aggressive myeloproliferative neoplasm, is characterized by thrombocytopenia, splenomegaly, fever and excess myelomonocytic cells. Approximately 35% of patients with JMML occur D61Y mutation in PTPN11, and it increases the activity of the protein. However, the effect of the D61Y mutation on SHP2 conformations in molecular basis is poorly understood. Therefore, the molecular dynamics simulations on SHP2-D61Y and SHP2-WT were performed to explore the effect of D61Y mutation on SHP2 and explain the reason for high activity of SHP2-D61Y mutant. The study on the RMSF, per-residue RMSD, PCA, DCCM and secondary structure found that the flexibilities of regions (residues His458-Ser460 and Gln506-Ala509) in SHP2-D61Y were higher than the corresponding regions in SHP2-WT, and the conformations of these regions almost transformed from α-helix and β-strand to Turn, respectively. Thus, the catalytical sites in the PTP domain (residues Asn217-Thr524) were exposed to the substrate easily, which contributed to the enhancement of SHP2-D61Y activity. Moreover, the residue interaction network, H bond occupancy and binding free energy were calculated, revealing that conformational difference were caused by distinctions in residue-residue interactions between Asp/Tyr61-Gln506, Gln506-Gln510, Gln506-Phe251, Gln506-Gly60, Gln506-Tyr63, Asp/Tyr61-Cys459, Cys459-Ile463 and Cys459-Arg465. The study here may offer the valuable information to explore the reason for the increased activity of SHP2 after D61Y-mutation.  相似文献   

19.
艾勇  张浩力* 《物理化学学报》2012,28(10):2237-2248
分子电子学已成为21世纪研究的热点. 通过将具有特定功能的分子连接在纳米尺度金属电极之间从而构筑包括分子导线、开关、整流器在内的各种分子尺度电子器件, 这引起了科学家们广泛的研究兴趣. 在分子电子学研究中, 构筑金属/分子/金属(MMM)分子结是研究分子器件中电子传输性质的关键. 尽管已经取得了很大的进展, 目前在纳米尺度下构筑稳定可靠的MMM分子结并测试单个分子的电学性质仍然面临很多挑战. 本文着重对单分子电学性质的测试技术和相关理论研究的最新进展以及存在的挑战做了概述.  相似文献   

20.
    
Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22Cu7(C≡CR)16(PPh3)5Cl6](PPh4), Ag22Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2, four −C≡CR, two chlorides and one helical Ag5Cu4(C≡CR)10(PPh3)5Cl4. Structural analysis reveals that Ag22Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号