首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Biological ion channels use the synergistic effects of various strategies to realize highly selective ion sieving. For example, potassium channels use functional groups and angstrom-sized pores to discriminate rival ions and enrich target ions. Inspired by this, we constructed a layered crystal pillared by crown ether that incorporates these strategies to realize high Li+ selectivity. The pillared channels and crown ether have an angstrom-scale size. The crown ether specifically allows the low-barrier transport of Li+. The channels attract and enrich Li+ ions by up to orders of magnitude. As a result, our material sieves Li+ out of various common ions such as Na+, K+, Ca2+, Mg2+ and Al3+. Moreover, by spontaneously enriching Li+ ions, it realizes an effective Li+/Na+ selectivity of 1422 in artificial seawater where the Li+ concentration is merely 25 μM. We expect this work to spark technologies for the extraction of lithium and other dilute metal ions.  相似文献   

2.
Unlike many other biologically relevant ions (Na+, K+, Ca2+, Cl, etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.  相似文献   

3.
Lithium (Li) extraction from brines is a major barrier to the sustainable development of batteries and alloys; however, current separation technology suffers from a trade-off between ion selectivity and permeability. Herein, a crown ether mechanically interlocked 3D porous organic framework (Crown-POF) was prepared as the porous filler of thin-film nanocomposite membranes. Crown-POF with penta-coordinated (four Ocrown atoms and one Ntert-amine atom) adsorption sites enables a special recognition for Li+ ion. Moreover, the four Ntert-amine atoms on each POF branch facilitate the flipping motion of Li+ ion along the skeletal thread, while retaining the specified binding pattern. Accordingly, the crown ether interlocked POF network displays an ultrafast ion transfer rate, over 10 times that of the conventional porous materials. Notably, the nanocomposite membrane gives high speed and selectivity for Li+ ion transport as compared with other porous solid-based mixed-matrix membranes.  相似文献   

4.
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+, disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.  相似文献   

5.
Natural protein channels have evolved with fantastic spatial structures, which play pivotal physiological functions in all living systems. Learning from nature, chemical scientists have developed a myriad of artificial transmembrane ion channels by using various chemical strategies, among which the non-covalent supramolecular ion channels exhibit remarkable advantages over other forms(e.g., single-molecule ion channel), which exhibited facile preparation methods, easier structural modification and functionalization. In this review, we have systematically summarized the recent progress of supramolecular self-assembled artificial transmembrane ion channels, which were classified by different self-assembly mechanisms, such as hydrogen bonds, π-π interactions, etc. Detailed preparation process and self-assembly strategies of the supramolecular ion channels have been described. Moreover, potential biomedical applications of the supramolecular ion channels have also been carefully discussed in this review. Finally, future opportunities and challenges facing this field were also elaborately discussed. It is anticipated that this review could provide a panoramic sketch and future directions towards the construction of novel artificial ion channels with novel functions and biomedical applications.  相似文献   

6.
Biological proton channels play important roles in the delicate metabolism process, and have led to great interest in mimicking selective proton transport. Herein, we designed a bioinspired proton transport membrane by incorporating flexible 14-crown-4 (14C4) units into rigid frameworks of polyimine films by an interfacial Schiff base reaction. The Young's modulus of the membrane reaches about 8.2 GPa. The 14C4 units could grab water, thereby forming hydrogen bond-water networks and acting as jumping sites to lower the energy barrier of proton transport. The molecular chains present a vertical orientation to the membrane, and the ions travel between the quasi-planar molecular sheets. Furthermore, the 14C4 moieties could bond alkali ions through host–guest interactions. Thus, the ion conductance follows H+≫K+>Na+>Li+, and an ultrahigh selectivity of H+/Li+ (ca. 215) is obtained. This study provides an effective avenue for developing ion-selective membranes by embedding macrocycle motifs with inherent cavities.  相似文献   

7.
Intermolecular charge transport is one of the essential modes for modulating charge transport in molecular electronic devices. Supermolecules are highly promising candidates for molecular devices because of their abundant structures and easy functionalization. Herein, we report an efficient strategy to enhance charge transport through pillar[5]arene self-assembled monolayers (SAMs) by introducing cationic guests. The current density of pillar[5]arene SAMs can be raised up to about 2.1 orders of magnitude by inserting cationic molecules into the cavity of pillar[5]arenes in SAMs. Importantly, we have also observed a positive correlation between the charge transport of pillar[5]arene-based complex SAMs and the binding affinities of the pillar[5]arene-based complexation. Such an enhancement of charge transport is attributed to the efficient host–guest interactions that stabilize the supramolecular complexes and lower the energy gaps for charge transport. This work provides a predictive pattern for the regulation of intermolecular charge transport in guiding the design of next generation switches and functional sensors in supramolecular electronics.  相似文献   

8.
9.
Here we report synthetic monosaccharide channels built with shape-persistent organic cages, porphyrin boxes ( PB s), that allow facile transmembrane transport of glucose and fructose through their windows. PB s show a much higher transport rate for glucose and fructose over disaccharides such as sucrose, as evidenced by intravesicular enzyme assays and molecular dynamics simulations. The transport rate can be modulated by changing the length of the alkyl chains decorating the cage windows. Insertion of a linear pillar ligand into the cavity of PB s blocks the monosaccharide transport. In vitro cell experiment shows that PB s transport glucose across the living-cell membrane and enhance cell viability when the natural glucose transporter GLUT1 is blocked. Time-dependent live-cell imaging and MTT assays confirm the cyto-compatibility of PB s. The monosaccharide-selective transport ability of PB s is reminiscent of natural glucose transporters (GLUTs), which are crucial for numerous biological functions.  相似文献   

10.
The cell membrane contains specific systems for passive and active transport of ions between the cytoplasm and the extracellular medium. For a number of small and medium-sized transport molecules like valinomycin and gramicidin A, extensive structural and kinetic data are available and it is possible in these cases to understand the transport function on the basis of their molecular structure. Incorporation into artificial bimolecular lipid membranes opens up the possibility of studying the kinetic properties of biological transport systems in detail.  相似文献   

11.
12.
13.
Abstract

Cs+ and Sr2+ are selectively removed over Na+ from acidic aqueous solutions with high Na+ concentrations by using membranes designed to selectively transport one of the two cations. To this end, calix[4]arene derivatives were used as carriers in polymer inclusion membranes (PIMs). The synthesis and characterization of new calix[4]arene derivatives (a bisamide (2) and three bisesters (3, 5 and 6)) used for the separation of Sr2+ are described. Another bisester (4) was employed for the same separation. In addition, a calix[4]arene-crown-6 (7) was incorporated into the membrane for Cs+ extraction. The concentration of each membrane component (polymer, carrier and counter-ion) was optimized and the permeability coefficients (P, m sec?1) of Cs+, Sr2+ and Na+ were determined. A synergistic effect between the calixarenes and dinonylnaphtalenesulfonic acid, used as counterion, (DNNS, 8) was observed. High selectivity of Cs+ over Na+ and of Sr2+ over Na+ were obtained with compounds 7 and 3, respectively. The best P for Sr2+ was obtained with compound 4. A long-term experiment was carried out to demonstrate the durability of PIMs. PIMs are compared to classical supported liquid membranes.  相似文献   

14.
《Electroanalysis》2018,30(2):304-309
The blocking effects of the cationic procaine, a typical local anesthetic (LA), on ion transport through gramicidin A (gA) channels between two aqueous phases (W1 and W2) were electrochemically elucidated. Although the gA channels promoted the permeation of monovalent cations, especially Cs+, the addition of procaine to W1 decreased the permeation of Cs+ through these channels from W1 to W2. This can be explained based on the following mechanism. Hydrophobic cationic procaine tends to approach the pore of a gA channel. Since it is too large to enter the pore, it cannot pass through the channel. Thus, cationic procaine inhibits the permeation of Cs+ from W1 to W2 by competing with Cs+ for access to the entrances of the gA channels. It is postulated that the decrease in the apparent activity of Cs+ caused by this competition prevents ion transport through the gA channels.  相似文献   

15.
《Electroanalysis》2006,18(11):1091-1096
N‐(2‐Pyridyl)‐N′‐(4‐methoxyphenyl)‐thiourea (PMPT) was found to be a suitable neutral ion carrier for the construction of a highly selective and sensitive La(III) membrane sensor. Poly(vinyl chloride) (PVC) based membranes of PMPT with potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) as an anionic excluder and oleic acid (OA), dibutyl phthalate (DBP), benzyl acetate (BA) and o‐nitrophenyloctyl ether (NPOE) as plasticizing solvent mediators were constructed and investigated as La(III) membrane sensors. A membrane composed of PMPT‐PVC‐KTpClPB‐BA with the ratio 8.0 : 35.0 : 3.0 : 54.0 works well over a very wide concentration range (4.0×10?8 to 1.0×10?1 M) with a Nernstian slope of 19.6±0.2 mV per decade of activity between pH values of 4.0 and 9.0. The detection limit of the sensor was calculated to be 2.0×10?8 M (ca. 3.0 ppb). The sensor displays very good discrimination toward La(III) ions with regard to most common metal ions and lanthanide ions. The proposed sensor shows a short response time for whole concentration range (ca. 12 s). For evaluation of the analytical applicability of the La(III) sensor, it was successfully used as an indicator electrode for the titration of La(III) ions with EDTA. It was also applied to the determination of fluoride content of two mouth wash preparation samples and monitoring of La(III) ions in some binary and ternary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号