首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Nanostructures made of magnetic cores (from Fe3O4) with attached silver plasmonic nanostructures were covered with a very thin layer of silica. The (Fe3O4@Ag)@SiO2 magnetic–plasmonic nanomaterial can be manipulated using a magnetic field. For example, one can easily form homogeneous layers from this nanomaterial using a very simple procedure: deposition of a layer of a sol of such a nanostructure and evaporation of the solvent after placing the sample in a strong magnetic field. Due to the rapid magnetic immobilization of the magnetic–plasmonic nanomaterial on the investigated surface, no coffee-ring effect occurs during the evaporation of the solvent. In this contribution, we report the first example of a magnetic, silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Nanoresonators based on silver plasmonic nanostructures locally enhance the intensity of the exciting electromagnetic radiation in a significantly broader frequency range than the previously used magnetic SHINERS nanoresonators with gold plasmonic nanostructures. Example applications where the resulting nanomaterial was used for the SHINERS investigation of a monolayer of mercaptobenzoic acid chemisorbed on platinum, and for a standard SERS determination of dopamine, are also presented.  相似文献   

2.
In the present study, we carried out a chemical synthesis and characterization of Fe3O4@PEG‐Au as a core/shell nanocomposite in an aqueous solution by the chemical co‐precipitation of Fe3+ and Fe2+ ions and encapsulated it by polyethylene glycol (PEG) in order to enhance hydrophilicity and biocompatibility of gold ions and immobilize them in the presence of NaBH4 as a reducing agent. The nanostructures were characterized with FT‐IR, FESEM, EDS, WDX, VSM, ICP‐MS, and TEM. The antimicrobial activities of the nanostructures were tested against pathogenic microorganisms, including Staphylococcus aureus , Escherichia coli , and Candida albicans by broth microdilution method according to the methods of the Clinical Laboratory Standard Institute (CLSI). The toxicity of the nanostructures was tested against animal cell line based on MTT assay. The synthesized core/shell nanostructures had a good activity against the representative microorganisms of public health concern and revealed an insignificant toxicity against animal cell line.  相似文献   

3.
A novel [Ru(bpy)2(dcbpy)NHS] labeling/aptamer‐based biosensor combined with gold nanoparticle amplification for the determination of lysozyme with an electrochemiluminescence (ECL) method is presented. In this work, an aptamer, an ECL probe, gold nanoparticle amplification, and competition assay are the main protocols employed in ECL detection. With all the protocols used, an original biosensor coupled with an aptamer and [Ru(bpy)2(dcbpy)NHS] has been prepared. Its high selectivity and sensitivity are the main advantages over other traditional [Ru(bpy)3]2+ biosensors. The electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) characterization illustrate that this biosensor is fabricated successfully. Finally, the biosensor was applied to a displacement assay in different concentrations of lysozyme solution, and an ultrasensitive ECL signal was obtained. The ECL intensity decreased proportionally to the lysozyme concentration over the range 1.0×10?13–1.0×10?8 mol L?1 with a detection limit of 1.0×10?13 mol L?1. This strategy for the aptasensor opens a rapid, selective, and sensitive route for the detection of lysozyme and potentially other proteins.  相似文献   

4.
In this study, an effect of different concentrations of urea on the morphology of cobalt oxide (Co3O4) nanostructures was investigated. The Co3O4 nanostructures are fabricated on gold coated glass substrate by the hydrothermal method. The morphological and structural characterization was performed by scanning electron microscopy, and X‐ray diffraction techniques. The Co3O4 nanostructures exhibit morphology of flowers‐like and have comprised on nanowires due to the increasing amount of urea. The nanostructures were highly dense on the substrate and possess a good crystalline quality. The Co3O4 nanostructures were successfully used for the development of a sensitive glucose biosensor. The presented glucose biosensor detected a wide range of glucose concentrations from 1×10?6 M to 1×10?2 M with sensitivity of a ?56.85 mV/decade and indicated a fast response time of less than 10 s. This performance could be attributed to the heterogeneous catalysis effect at glucose oxidase enzyme, nanoflowers, and nanowires interfaces, which have enhanced the electron transfer process on the electrode surface. Moreover, the reproducibility, repeatability, stability and selectivity were also investigated. All the obtained results indicate the potential use of the developed glucose sensor for monitoring of glucose concentrations at drugs, human serum and food industry related samples.  相似文献   

5.
Yali Li  Hui Zhu  Xiurong Yang 《Talanta》2009,80(2):870-2045
In order to solidify the electrochemiluminescence (ECL) luminophor tris(2,2′-bipyridyl) ruthenium(II) ([Ru(bpy)3]2+) onto the electrode surfaces robustly, the negative charged heteropolyacids (HPAs) moieties were utilized to attract and bond cations [Ru(bpy)3]2+ via an adsorption method. The compositions and microstructures of the hybrid complexes were characterized by elemental analysis (EDS), spectroscopic techniques (UV-vis, FTIR) and field-emission scanning electron microscopy (FE-SEM). The electrochemical and ECL behaviors of the [Ru(bpy)3]2+/[PW12O40]3− hybrid complex contained in the solid film of the nanocomposites formed on the electrode surfaces were also studied. It was found that the corresponding solid membranes exhibited a diffusion-controlled voltammetric feature and excellent electrochemiluminescence behaviors. Hence potential prospects as new electrochemiluminescent materials for application in electroanalytical detection are envisioned.  相似文献   

6.
Reproducible and controllable growth of nanostructures with well‐defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of gold plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA‐mediated growth. By combining synchrotron‐based small‐angle X‐ray scattering (SAXS) with transmission electron microscopy (TEM), we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark‐field scattering spectroscopy. Through this comprehensive study, we report a growth mechanism for gold plasmonic nanostructures, and the first semiquantitative revelation of the remarkable interplay between their morphology and unique plasmonic properties.  相似文献   

7.
Plasmon-enhanced electrocatalysis (PEEC), based on a combination of localized surface plasmon resonance excitation and an electrochemical bias applied to a plasmonic material, can result in improved electrical-to-chemical energy conversion compared to conventional electrocatalysis. Here, we demonstrate the advantages of nano-impact single-entity electrochemistry (SEE) for investigating the intrinsic activity of plasmonic catalysts at the single-particle level using glucose electrooxidation and oxygen reduction on gold nanoparticles as model reactions. We show that in conventional ensemble measurements, plasmonic effects have minimal impact on photocurrents. We suggest that this is due to the continuous equilibration of the Fermi level (EF) of the deposited gold nanoparticles with the EF of the working electrode, leading to fast neutralization of hot carriers by the measuring circuit. The photocurrents detected in the ensemble measurements are primarily caused by photo-induced heating of the supporting electrode material. In SEE, the EF of suspended gold nanoparticles is unaffected by the working electrode potential. As a result, plasmonic effects are the dominant source of photocurrents under SEE experimental conditions.  相似文献   

8.
Photo-thermal catalysis has recently emerged as a viable strategy to produce solar fuels or chemicals using sunlight. In particular, nanostructures featuring localized surface plasmon resonance (LSPR) hold great promise as photo-thermal catalysts given their ability to convert light into heat. In this regard, traditional plasmonic materials include gold (Au) or silver (Ag), but in the last years, transition metal nitrides have been proposed as a cost-efficient alternative. Herein, we demonstrate that titanium nitride (TiN) tubes derived from the nitridation of TiO2 precursor display excellent light absorption properties thanks to their intense LSPR band in the visible–IR regions. Upon deposition of Ru nanoparticles (NPs), Ru-TiN tubes exhibit high activity towards the photo-thermal CO2 reduction reaction, achieving remarkable methane (CH4) production rates up to 1200 mmol g−1 h−1. Mechanistic studies suggest that the reaction pathway is dominated by thermal effects thanks to the effective light-to-heat conversion of Ru-TiN tubes. This work will serve as a basis for future research on new plasmonic structures for photo-thermal applications in catalysis.  相似文献   

9.
This report focuses on the synthesis of gold‐nickel bimetallic nanostructures. In the presence of amine as the capping agent, thermal decomposition of organometallic precursors CH3AuPPh3 and Ni(PPh3)4 in o‐xylene offered AuNi nanorods. Several preparative parameters possible influencing the morphology of the structure were carefully studied by varying the reaction conditions with respect to the standard procedure. The morphology and composition of the AuNi nanorods were principally characterized by transmission electron microscopy, energy dispersive spectroscopy, and powder X‐ray diffraction. The distribution of the Au as well as Ni atoms was examined by EDS mapping analysis. The mechanism of the formation of the AuNi bimetallic nanorods is proposed on the base of observation of the morphologies of nanostructures at various reaction time intervals.  相似文献   

10.
《Analytical letters》2012,45(1):116-126
The electrochemiluminescence of bis(2, 2′-bipyridine) (dipyrido[3, 2-a:2′ 3′-c]phenazine-N4N5) ruthenium(II) ([Ru(bpy)2(dppz)]2+) was used to monitor deoxyribonucleic acid (DNA) charge transfer with tri-n-propylamine as a coreactant. This system was used to measure damage to DNA induced by perfluorooctanoic acid. Fifteen-base pairs of double-stranded DNA with a thiol group at the 5′ end position were covalently bonded to a gold electrode. An electrochemiluminescence sensor was then constructed by incubating the modified gold electrode in [Ru(bpy)2(dppz)]2+ solution for 30 min. For comparison, single-stranded DNA, well-matched double-stranded DNA, and single base-mismatched double-stranded DNA were assembled on the gold surface. The results showed that the electrochemiluminescence behavior of the DNA sensors were unique. The electrochemiluminescence decreased when the [Ru(bpy)2(dppz)]2+-DNA ECL sensor was incubated in a perfluorooctanoic acid solution. The damage to DNA caused by perfluorooctanoic acid was monitored using a combination of DNA charge transfer theory and the interaction between DNA and [Ru(bpy)2(dppz)]2+. The detection limit for perfluorooctanoic acid was 1 × 10?12 mol/L. [Ru(bpy)2(dppz)]2+ was shown to be a sensitive electrochemiluminescence sensor for the determination of DNA damage.  相似文献   

11.
We report the integration of surface plasmon resonance (SPR), cyclic voltammetry and electrochemiluminescence (ECL) responses to survey the interfacial adsorption and energy transfer processes involved in ECL on a plasmonic substrate. It was observed that a Tween 80/tripropylamine nonionic layer formed on the gold electrode of the SPR sensor, while enhancing the ECL emission process, affects the electron transfer process to the luminophore, Ru(bpy)32+, which in turn has an impact on the plasmon resonance. Concomitantly, the surface plasmon modulated the ECL intensity, which decreased by about 40 %, due to an interaction between the excited state of Ru(bpy)32+ and the plasmon. This occurred only when the plasmon was excited, demonstrating that the optically excited surface plasmon leads to lower plasmon‐mediated luminescence and that the plasmon interacts with the excited state of Ru(bpy)32+ within a very thin layer.  相似文献   

12.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

13.
Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H2PtCl6 and I during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology. Au/Pt nanobowls, which couple plasmonic Au and catalytic Pt, were then constructed as plasmonic electrocatalysts for methanol oxidation. The mass activity reached 497.6 mA mg−1 under visible-light illumination, which is 1.9 times that measured in the dark. Simultaneously, the electrocatalytic stability is also greatly improved under light excitation. The enhanced properties of the plasmonic Au/Pt electrocatalysts are ascribed to the synergistic effect of the plasmon-enhanced photothermal and hot-carrier effects on the basis of experimental investigations. This work thus offers an effective methodology to construct efficient plasmonic electrocatalysts for fuel cells.  相似文献   

14.
Localized surface plasmon resonance(LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts.In the past decades,noble metal nanoparticles(Au and Ag) with LSPR feature have found wide applications in solar energy conversion.Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures.However,high cost and...  相似文献   

15.
Bright, near-infrared electrochemiluminescence (NIR–ECL) of Au18 nanoclusters is reported herein. Spooling ECL and photoluminescence spectroscopy were used to track and link NIR emissions at 832 and 848 nm to three emissive species, Au180*, Au181+* and Au182+*, with a considerably high ECL efficiency of 5.5 relative to that of the gold standard Ru(bpy)32+/TPrA (with 5–6 % reported ECL efficiency). The unprecedentedly high efficiency is due to the overlapped oxidation potentials of Au180 and tri-n-propylamine as co-reactant, the exposed facets of Au180 gold core, and electrocatalytic loops. These discoveries will add a new member to the efficient NIR-ECL gold nanoclusters family and bring more potential applications.  相似文献   

16.
Nanostructures of polypyrrole (PPy) were synthesized in the presence of different dopants including hydrochloric acid (HCl), ferric chloride (FeCl3), p‐toluene sulfonic acid (p‐TSA), camphor sulfonic acid (CSA), and polystyrene sulfonic acid (PSSA), using a simple interfacial oxidative polymerization method. The method is a reliable non‐template approach with relatively simple instrumentation, ease of synthesis, and economic viability for synthesizing PPy nanostructures. Morphology of synthesized PPy structures was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicate the formation of one‐dimensional (1D) nanofibers with average diameter of 75–180 nm. Energy dispersive spectrum (EDS) of the PPy nanofibers indicates the attachment of the dopants to the PPy backbone; the fact is further confirmed by the Fourier transform infrared (FTIR) spectra of PPy nanostructures. Thermal stabilities of the nanostructures explored using thermal gravimetric analysis (TGA) follow the order PPy‐p‐TSA > CSA > HCl > FeCl3 > PSSA. It is noticed that the electrical conductivity (EC) of PPy nanostructures depends upon the nature of dopant (PPy‐p‐TSA > CSA > HCl > FeCl3 > PSSA), PPy‐p‐TSA nanofibers showing the highest EC of 6 × 10?2 Scm?1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, eco-friendly, cost-effective and rapid microwave-assisted method has been developed to synthetize dendritic silver nanostructures, composed of silver nanoparticles (AgNPs), using white grape pomace aqueous extract (WGPE) as both reducing and capping agent. With this aim, WGPE and AgNO3 (1 mM) were mixed at different ratio, and microwave irradiated at 700 W, for 40 s. To understand the role of bioactive compounds involved in the green synthesis of AgNPs, preliminary chemical characterization, FT-IR analysis and 1H NMR metabolite profiling of WGPE were carried out. The effects of bioactive extract concentration and stability over time on AgNPs formation were also evaluated. WGPE-mediated silver nanostructures were then characterized by UV–vis, FTIR analyses, and scanning electron microscopy. Interestingly, the formation of dendritic nanostructures, originated from the self-assembly of Ag rounded nanoparticles (average diameter of 33 ± 6 nm), was observed and ascribed to the use of microwave power and the presence of organic components within the used WGPE, inducing an anisotropic crystal growth and promoting a diffusion-limited aggregation mechanism. The bio-dendritic synthetized nanostructures were also evaluated for potential applications in bio-sensing and agricultural fields. Cyclic voltammetry measurements in 0.5 M phosphate + 0.1 M KCl buffer, pH 7.4 showed that green AgNPs possess the electroactive properties typical of AgNPs produced using chemical protocol. The biological activity of synthetized AgNPs was evaluated by in-vitro antifungal activity against F. graminearum. Additionally, a phytotoxicity evaluation of synthetized green nanostructures was carried out on wheat seed germination. Results highlighted the potential of WGPE as green agent for bio-inspired nanomaterial synthesis, and of green Ag nanostructures, which can be used as antifungal agent and in biosensing applications.  相似文献   

18.
A novel perylenetetracarboxylic diimide (PDI) derivative, N,N′-di(4′-benzo-15-crown-5-ether)-1,7-di(4-tert-butyl-phenoxy)perylene-3,4;9,10-tetracarboxylic diimide (CRPDI), has been synthesised and characterised. Dimerisation of CRPDI is induced by the presence of K+ in CHCl3 or spontaneously occurs in methanol, as revealed by absorption and emission spectroscopy. In particular, the formation of co-facial dimer in the presence of K+ proceeds in a three-stage process, as indicated by absorption spectroscopy. The belt- and rope-like nanostructures of CRPDI fabricated from methanol and CHCl3 solution in the presence of K+ are obtained by scanning electron microscopy. Furthermore, the conductivity of the rope-like nanostructures from the cation-induced dimeric species is more than ca. 1 order of magnitude higher than the belt-like nanostructures from the solvent-induced dimeric species. The present result represents the further effort towards realisation of controlling and tuning the morphology of self-assembled nanostructures of PDI derivatives through molecular design and synthesis. It will be valuable for the design and preparation of PDI-based nano-(opto)electronic devices with good performance due to the close relationship between the molecular ordering and dimensions of nanostructures and the performance of nanodevices.  相似文献   

19.
The cationic gold phosphine complex [{PCy2(o‐biphenyl)}Au(NCMe)]+SbF6? (Cy=cyclohexyl) catalyzes the intermolecular, anti‐Markovnikov hydroamination reaction of monosubstituted and cis‐ and trans‐disubstituted alkylidenecyclopropanes (ACPs) with imidazolidin‐2‐ones and other nucleophiles. This reaction forms 1‐cyclopropyl alkylamine derivatives in high yield and with high regio‐ and diastereoselectivity. NMR spectroscopic analysis of gold π‐ACP complexes and control experiments point to the sp hybridization of the ACP internal alkene carbon atom as controlling the regiochemistry of the ACP hydroamination reaction.  相似文献   

20.
A new route has been developed to design plasmonic pollen grain-like nanostructures (PGNSs) as surface-enhanced Raman scattering (SERS)-active substrate. The nanostructures consisting of silver (Ag) and gold (Au) nanoparticles along with zinc oxide (ZnO) nanoclusters as spacers were found highly SERS-active. The morphology of PGNSs and those obtained in the intermediate stage along with each elemental evolution has been investigated by a high-resolution field emission scanning electron microscopy. The optical band gaps and crystal structure have been identified by UV-vis absorption and X-ray powder diffraction (XRD) measurements, respectively. For PGNSs specimen, three distinct absorption bands related to constituent elements Ag, Au, and ZnO were observed, whereas XRD peaks confirmed the existence of Ag, Au, and ZnO within the composition of PGNSs. SERS-activity of PGNSs was confirmed using Rhodamine 6G (R6G) as Raman-active dyes. Air-cooled solid-state laser kits of 532 nm were used as excitation sources in SERS measurements. SERS enhancement factor was estimated for PGNSs specimen and was found as high as 3.5×106. Finite difference time domain analysis was carried out to correlate the electromagnetic (EM) near-field distributions with the experiment results achieved under this investigation. EM near-field distributions at different planes were extracted for s-, p- and 45° of incident polarizations. EM near-field distributions for such nanostructures as well as current density distributions under different circumstances were demonstrated and plausible scenarios were elucidated given SERS enhancements. Such generic fabrication route as well as correlated investigation is not only indispensable to realize the potential of SERS applications but also unveil the underneath plasmonic characteristics of complex SERS-active nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号