首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerization-induced self-assembly(PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl(n BHMA) and tert-butyl(t BHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of n BHMA and t BHMA employing poly(ethylene glycol) macromolecular chain transfer agents(macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for t BHMA, which has a higher water solubility than that of n BHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.  相似文献   

2.
3.
It is well-known that polymerization-induced self-assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non-polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non-polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition-fragmentation chain-transfer (RAFT) polymerization in various n-alkanes, poly(α-olefins), mineral oil, low-viscosity silicone oils or supercritical CO2 are discussed in detail. Selected formulations exhibit thermally induced worm-to-sphere or vesicle-to-worm morphological transitions and the rheological properties of various examples of worm gels in non-polar media are summarized. Finally, visible absorption spectroscopy and small-angle X-ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small-angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms.  相似文献   

4.
We have linked the structural and dynamic properties in aqueous solution of amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the physico-chemical characteristics of the samples. Despite product imperfections, the samples self-assemble in melt and aqueous solutions as predicted by monodisperse microphase separation theory. However, the PBA core are abnormally large; the swelling of PBA cores is not due to AA (the Flory parameter chi(PBA/PAA), determined at 0.25, means strong segregation), but to h-PBA homopolymers (content determined by liquid chromatography at the point of exclusion and adsorption transition, LC-PEAT). Beside the dominant population of micelles detected by scattering experiments, capillary electrophoresis CE analysis permitted detection of two other populations, one of h-PAA, and the other of free PBA-b-PAA chains, that have very short PBA blocks and never self-assemble. Despite the presence of these free unimers, the self-assembly in solution was found out of equilibrium: the aggregation state is history dependant and no unimer exchange between micelles occurs over months (time-evolution SANS). The high PBA/water interfacial tension, measured at 20 mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems are neither at thermal equilibrium nor completely frozen systems: internal fractionation of individual aggregates can occur.  相似文献   

5.
本文以聚甲基丙烯酸甘油酯(PGMA)作为大分子链转移剂、甲基丙烯酸羟丙酯(HPMA)为单体、苯基钠盐-三甲基苯甲酰亚磷酸盐(SPTP)为引发剂,通过水相光引发可逆加成-断裂链转移(RAFT)分散聚合制备了一系列PGMA-b-PHPMA共聚物纳米材料。考察了水相光引发聚合诱导自组装的反应动力学,在温和条件下(水相、可见光和室温)成功得到不同形貌的聚合物纳米材料(球形、纤维和囊泡),并进一步探究了反应条件对嵌段聚合物形貌的影响。聚合反应的激活或暂停都可以通过对光源的简单"开/关"进行控制。  相似文献   

6.
Water‐soluble and amphiphilic polymers are of great interest to industry and academia, as they can be used in applications such as biomaterials and drug delivery. Whilst ring‐opening metathesis polymerization (ROMP) is a fast and functional group tolerant methodology for the synthesis of a wide range of polymers, its full potential for the synthesis of water‐soluble polymers has yet to be realized. To address this, we report a general strategy for the synthesis of block copolymers in aqueous milieu using a commercially available ROMP catalyst and a macroinitiator approach. This allows for excellent control in the preparation of block copolymers in water. If the second monomer is chosen such that it forms a water‐insoluble polymer, polymerization‐induced self‐assembly (PISA) occurs and a variety of self‐assembled nano‐object morphologies can be accessed.  相似文献   

7.
Polymerization-induced self-assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so-called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub-10 nm surface features. By varying the degree of polymerization of the stabilizer and core-forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre-organization of copolymer chains within sterically-stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution-cast molecularly-dissolved copolymer chains.  相似文献   

8.
Latex interpenetrating and semi-interpenetrating polymer networks (LIPNs and semi-LIPNs) combine the morphological characteristics of bulk-polymerized IPNs with the characteristics of polymers produced by emulsion polymerization; there are IPN structures within the latex particles. These LIPNs can be injection-molded using standard thermoplastic methods and machinery. A dual thermoset—thermoplastic nature characterizing the LIPN manifests itself in the mechanical and rheological behavior reflecting unique morphologies. These morphologies result from a sequential two-stage latex (TSL) polymerization and include core—shell, domain, interpenetrating polymer networks and various other combinations. Elastomeric TSL with crosslinked polyacrylates (xPA) as the first stage and crosslinked polystyrene (xPS) as the second, each stage lightly crosslinked, yield IPN-nano-domain structural particles. Upon molding, the particles become interconnected by joint PS nanodomains, introducing a particle—particle strength-forming mechanism. The intraparticle glassy PS nanodomains reinforce the soft elastomeric particles enhancing their modulus. Glassy “all-styrene” semi-LIPNs made of PS and xPS show improved mechanical performance compared to PS, while exhibiting good transparency. Volumetric crazing in these PS/xPS materials develops in tension-improving elongation and strength. The presence of xPS particles, denser and thus stiffer than the PS matrix, renders a higher modulus. Essentially xPS highly filled blends are achieved along with significant particle—matrix interactions. The ability to generate a controlled plethora of morphologies offers a wealth of potential applications, from reinforced elastomers to high impact plastics. Poly(acrylonitrile—butadiene—styrene), a semi-LIPN, is a commodity plastic, clearly demonstrating the utilization potential of the TSL procedure for generating very fine multiphase materials of scientific and technological merits.  相似文献   

9.
Polymerization‐induced self‐assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so‐called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub‐10 nm surface features. By varying the degree of polymerization of the stabilizer and core‐forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre‐organization of copolymer chains within sterically‐stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution‐cast molecularly‐dissolved copolymer chains.  相似文献   

10.
Polymerization‐induced self‐assembly (PISA) is an extremely versatile method for the in situ preparation of soft‐matter nanoparticles of defined size and morphologies at high concentrations, suitable for large‐scale production. Recently, certain PISA‐prepared nanoparticles have been shown to exhibit reversible polymorphism (“shape‐shifting”), typically between micellar, worm‐like, and vesicular phases (order–order transitions), in response to external stimuli including temperature, pH, electrolytes, and chemical modification. This review summarises the literature to date and describes molecular requirements for the design of stimulus‐responsive nano‐objects. Reversible pH‐responsive behavior is rationalised in terms of increased solvation of reversibly ionized groups. Temperature‐triggered order–order transitions, conversely, do not rely on inherently thermo‐responsive polymers, but are explained based on interfacial LCST or UCST behavior that affects the volume fractions of the core and stabilizer blocks. Irreversible morphology transitions, on the other hand, can result from chemical post‐modification of reactive PISA‐made particles. Emerging applications and future research directions of this “smart” nanoparticle behavior are reviewed.

  相似文献   


11.
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.

A review that summarizes recent advances in the emerging field of polymerization-induced self-assembly. Topics ranging from initiation processes, morphologies and complex functional materials to applications and future directions are covered.  相似文献   

12.
We have investigated the complexation-induced phase behavior of the mixtures of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) and octyl gallate (OG) due to hydrogen bonding in different solvents. The Fourier transform infrared spectroscopic result indicates that the hydrogen-bonding was formed between the P4VP blocks and OG in both THF and DMF, implying the P4VP blocks can bind to OG. For PS-b-P4VP/OG mixture in chloroform, the morphological transitions were induced from the unimer configuration to swollen aggregate and complex-micelles by adding OG. Interestingly, the complex-micelles can lead the formation of the honeycomb structure from chloroform solution. The PS-b-P4VP/OG mixture in THF, behaving an amphiphilic diblock copolymer in solution state, exhibited a series of morphological transitions from sphere, pearl-necklace-liked rod, worm-liked rod, vesicle, to core-shell-corona aggregates by increasing the OG content. In contrast, the PS-b-P4VP/OG mixture in DMF maintained the unimer configuration upon adding OG. Therefore, the complexation-induced morphology of the mixtures of PS-b-P4VP and OG can be mediated by adopting different common solvents to affect the self-assembly behavior.  相似文献   

13.
It is well‐known that the self‐assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization‐induced self‐assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano‐objects. In this study, PISA is used to prepare a new thermoresponsive poly(N‐(2‐hydroxypropyl) methacrylamide)‐poly(2‐hydroxypropyl methacrylate) [PHPMAC‐PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well‐defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well‐suited to theoretical analysis. Self‐consistent mean field theory suggests this rich self‐assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1H NMR studies.  相似文献   

14.
Polymerization-induced self-assembly(PISA) is an emerging method for the preparation of block copolymer nano-objects at high concentrations. However, most PISA formulations have oxygen inhibition problems and inert atmospheres(e.g. argon, nitrogen) are usually required. Moreover, the large-scale preparation of block copolymer nano-objects at room temperature is challenging. Herein, we report an enzyme-assisted photoinitiated polymerization-induced self-assembly(photo-PISA) in continuous flow reactors with oxygen tolerance. The addition of glucose oxidase(GOx) and glucose into the reaction mixture can consume oxygen efficiently and constantly, allow the flow photoPISA to be performed under open-air conditions. Polymerization kinetics indicated that only a small amount of GOx(0.5 μmol/L) was needed to achieve the oxygen tolerance. Block copolymer nano-objects with different morphologies can be prepared by varying reaction conditions including the degree of polymerization(DP) of core-forming block, monomer concentration, reaction temperature, and solvent composition. We expect this study will provide a facile platform for the large-scale production of block copolymer nano-objects with different morphologies at room temperature.  相似文献   

15.
It is well‐known that the self‐assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization‐induced self‐assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano‐objects. In this study, PISA is used to prepare a new thermoresponsive poly(N‐(2‐hydroxypropyl) methacrylamide)‐poly(2‐hydroxypropyl methacrylate) [PHPMAC‐PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well‐defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well‐suited to theoretical analysis. Self‐consistent mean field theory suggests this rich self‐assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1H NMR studies.  相似文献   

16.
Despite over a century of modern surfactant science, the kinetic pathways of morphological transitions in micellar systems are still not well understood. This is mainly as a result of the lack of sufficiently fast methods that can capture the structural changes of such transitions. Herein, a simple surfactant system consisting of sodium dodecyl sulfate (SDS) in aqueous NaCl solutions is investigated. Combining synchrotron radiation small‐angle X‐ray scattering (SAXS) with fast stopped‐flow mixing schemes allows monitoring the process where polymer‐like micelles are formed from globular micelles when the salt concentration is suddenly increased. The results show that “worm‐like” micelles are formed by fusion of globular micelles and short cylinders in a fashion that bears similarities to a step‐like polymerization process.  相似文献   

17.
《中国化学快报》2020,31(6):1660-1664
Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc) amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT) dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide) trithiocarbonate(PDMAc-TTC-PDMAc) bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs) wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm) and vesicles with HHHs features were also synthesized in high solid content systems(30 wt% and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA.  相似文献   

18.
In this paper, the morphological evolution of latex particles on poly(vinyl acetate) (PVAc)/poly(butyl acrylate) (PBA) in two-stage seeded semi-continuous starved emulsion polymerization is studied, and the thermodynamic analysis and a mathematic model are derived to describe the interfacial free energy changes corresponding to various possible thermodynamically unstable morphologies during the polymerization process. The comparisons between the morphological evolution and the related thermodynamic analysis show that the morphological evolution of latex particles is oriented to the thermodynamic preferred morphology which is an inverted core/shell structure with PBA as core and PVAc as shell. Based on the comparisons, the possible morphological developmental pathway of PVAc/PBA core/shell latex is described. The possible morphological developmental pathway suggests that the observed multi-particle morphology in the polymerization process is due to restricted chain mobility related to high internal viscosity. The formation mechanism of PVAc/PBA core/shell latex, based on the experiments as well as the thermodynamic and dynamic analyses, is proposed, which signifies that PBA is first formed outside the PVAc seed and then migrate to the inside of the PVAc seed.  相似文献   

19.
A novel fluorescent‐labeled amphiphilic random terpolymer is synthesized by controlled radical polymerization of a fluorescent molecular rotor monomer, 2‐cyano‐2‐[4‐vinyl(1,1′‐biphenyl)‐4′‐yl]vinyljulolidine, a hydrophilic monomer, poly (ethylene glycol) methyl ether methacrylate, and a hydrophobic monomer, perfluorohexylethyl acrylate. Combined dynamic light scattering and fluorescence emission spectroscopy measurements are used to investigate its self‐assembly in water solution. Self‐assembled nanostructures with a hydrodynamic diameter size Dh of 4 ± 1 nm are detected due to the single‐chain folding of the terpolymer in unimer micelles. The fluorescence emission intensity of the terpolymer in water solution is found to be one order of magnitude higher than that in organic solvents, as a result of the preferential encapsulation of the julolidine co‐units in hydrophobic compartments of the unimer micelles. The temperature dependence of the self‐associative behavior of the amphiphilic terpolymer is also investigated and a critical temperature is identified at which a transition between single‐chain unimer micelles and multi‐chain aggregates (Dh = 400 ± 40 nm) reversibly takes place on heating–cooling cycles. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 797–804  相似文献   

20.
The phase transition between unimer and micellar phases of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer Pluronic P105 in aqueous solution has been investigated as a function of temperature using Fourier transform infrared spectroscopy. The transition of 8 wt% Pluronic P105 in aqueous solution was found to occur at 25 °C. As temperature increases, PO blocks appear to be stretched conformers with strong interchain interaction, and the formation of a hydrophobic core in the micellar phase. The EO chains are found to change to a more disordered structure with low-chain packing density from the unimer phase to the micellar phase. Both the EO and PO blocks exhibit dehydration during the phase transition. Received: 17 September 1998 Accepted in revised form: 10 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号