首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS−X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS−X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g−1 h−1. The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.  相似文献   

2.
The design for non-Cu-based catalysts with the function of producing C2+ products requires systematic knowledge of the intrinsic connection between the surface state as well as the catalytic activity and selectivity. In this work, photochemical in situ spectral surface characterization techniques combined with the first principle calculations (DFT) were applied to investigate the relationships between the composition of surface states, coordinated motifs, and catalytic selectivity of a titanium oxynitride catalyst. When the catalyst mediates CO2 photoreduction, C2 product selectivity is positively correlated with the surface Ti2+/Ti3+ ratio and the surface oxidation state is regulated and controlled by coordinated motifs of N−Ti-O/V[O], which can reduce the potential dimerization energy barriers of *CO−CO* and promote spontaneous formation of the subsequent *CO−CH2* intermediate. This phenomenon provides a new perspective for the design of heterogeneous catalysts for photoreduction of CO2 into useful products.  相似文献   

3.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

4.
Molecular catalysts (metal complexes), with molecularly defined uniform active sites and atomically precise structural tailorability allowing for regulating catalytic performance through metal- and ligand-centered engineering and elucidating reaction mechanisms via routine photoelectrochemical characterizations, have been increasingly explored for electrocatalytic CO2 reduction (ECR). However, their poor stability and low catalytic current density are undesirable for practical applications. Heterogenizing discrete molecular catalysts can potentially surmount these issues, and the resulting integrated catalysts largely share catalytical properties with their discrete molecular counterparts, which bridge the gap between heterogeneous and homogeneous catalysis and combine their advantages. This minireview surveys advances in design and regulation of molecular catalysts such as porphyrin, phthalocyanine, and bipyridine-based metal complexes and their integrated catalytic materials for selective ECR.  相似文献   

5.
A catalyst in which Pd nanoparticles are supported on triangle-shaped La2O2CO3 nanosheets exposing predominantly the (001) planes (Pd/La2O2CO3-TNS; where TNS denotes triangular nanosheets) was prepared by a facile solvothermal method. The Pd/La2O2CO3-TNS catalysts exhibited excellent catalytic activity and recycling stability for hydrogenation of cinnamaldehyde to hydrocinnamaldehyde with turnover frequency of up to 41 238 h−1. This enhanced activity of Pd/La2O2CO3-TNS results from strong metal–support interactions. Structure analysis and characterization demonstrated that surface-oxygen-enriched La2O2CO3-TNS supports exposing (001) planes are beneficial to charge transfer between the Pd nanoparticles and triangle-shaped La2O2CO3 nanosheets and increase the electron density of Pd. Moreover, the modulated electronic states of the Pd/La2O2CO3-TNS catalysts can enhance the adsorption and activation of hydrogen to enhance the hydrogenation activity.  相似文献   

6.
The development of an efficient strategy for fabricating two-dimensional metal-organic framework (MOF) nanosheets with high yield and high stability is desirable. Herein, we demonstrate for the first time that large, single-layer 2D nickel-benzene dicarboxylate (Ni−BDC) MOF nanosheets can be fabricated with the assistance of supercritical (SC) CO2 in a pure aqueous system. Detailed experimental evidence reveals that the SC CO2 molecule can exchange with the lattice-coordinated H2O molecules, side-on coordinate with the metal Ni1 sites on the Ni−BDC surface, and finally break the interlayer hydrogen bond to exfoliate the bulk Ni−BDC into a 2D MOF. More importantly, a thin SC CO2 layer building up at the water−Ni−BDC interfaces can transform the pristine hydrophilic interface into a super-hydrophobic one. This super-hydrophobic layer at the water-MOF interface can effectively prevent dissociation, thus promoting the stability of Ni−BDC in aqueous system.  相似文献   

7.
The electrochemical reduction of CO2 presents a promising strategy to mitigate the greenhouse effect and reduce excess carbon dioxide emission to realize a carbon-neutral energy cycle, but it suffers from the lack of high-performance electrocatalysts. In this work, catalytic active cobalt porphyrin [TCPP(Co)=(5,10,15,20)-tetrakis(4-carboxyphenyl)porphyrin-CoII] was precisely anchored onto water-stable 2D metal–organic framework (MOF) nanosheets (Zr-BTB) to obtain ultrathin 2D MOF nanosheets [TCPP(Co)/Zr-BTB] with accessible catalytic sites for the CO2 reduction reaction. Compared with molecular cobalt porphyrin, the TCPP(Co)/Zr-BTB exhibits an ultrahigh turnover frequency (TOF=4768 h−1 at −0.919 V vs. reversible hydrogen electrode, RHE) owing to high active-site utilization. In addition, three post-modified 2D MOF nanosheets [TCPP(Co)/Zr-BTB-PABA, TCPP(Co)/Zr-BTB-PSBA, TCPP(Co)/Zr-BTB-PSABA] were obtained, with the modifiers of p-(aminomethyl)benzoic acid (PABA), p-sulfobenzoic acid potassium (PSBA), and p-sulfamidobenzoic acid (PSABA), to change the micro-environments around TCPP(Co) through the tuning of steric effects. Among them, the TCPP(Co)/Zr-BTB-PSABA exhibited the best performance with a faradaic efficiency (FECO) of 85.1 %, TOF of 5315 h−1, and jtotal of 6 mA cm−2 at −0.769 V (vs. RHE). In addition, the long-term durability of the electrocatalysts is evaluated and the role of pH buffer is revealed.  相似文献   

8.
Two‐dimensional (2D) engineering of materials has been recently explored to enhance the performance of electrocatalysts by reducing their dimensionality and introducing more catalytically active ones. In this work, controllable synthesis of few‐layer bismuth subcarbonate nanosheets has been achieved via an electrochemical exfoliation method. These nanosheets catalyse CO2 reduction to formate with high faradaic efficiency and high current density at a low overpotential owing to the 2D structure and co‐existence of bismuth subcarbonate and bismuth metal under catalytic turnover conditions. Two underlying fast electron transfer processes revealed by Fourier‐transformed alternating current voltammetry (FTacV) are attributed to CO2 reduction at bismuth subcarbonate and bismuth metal. FTacV results also suggest that protonation of CO2.? is the rate determining step for bismuth catalysed CO2 reduction.  相似文献   

9.
Molecular electrocatalysts for CO2-to-CO conversion often operate at large overpotentials, due to the large barrier for C−O bond cleavage. Illustrated with ruthenium polypyridyl catalysts, we herein propose a mechanistic route that involves one metal center that acts as both Lewis base and Lewis acid at different stages of the catalytic cycle, by density functional theory in corroboration with experimental FTIR. The nucleophilic character of the Ru center manifests itself in the initial attack on CO2 to form [ Ru -CO2]0, while its electrophilic character allows for the formation of a 5-membered metallacyclic intermediate, [ Ru -CO2CO2]0,c, by addition of a second CO2 molecule and intramolecular cyclization. The calculated activation barrier for C−O bond cleavage via the metallacycle is decreased by 34.9 kcal mol−1 as compared to the non-cyclic adduct in the two electron reduced state of complex 1 . Such metallacyclic intermediates in electrocatalytic CO2 reduction offer a new design feature that can be implemented consciously in future catalyst designs.  相似文献   

10.
Upgrading CO2 into multi-carbon (C2+) compounds through the CO2 reduction reaction (CO2RR) offers a practical approach to mitigate atmospheric CO2 while simultaneously producing high value chemicals. The reaction pathways for C2+ production involve multi-step proton-coupled electron transfer (PCET) and C−C coupling processes. By increasing the surface coverage of adsorbed protons (*Had) and *CO intermediates, the reaction kinetics of PCET and C−C coupling can be accelerated, thereby promoting C2+ production. However, *Had and *CO are competitively adsorbed intermediates on monocomponent catalysts, making it difficult to break the linear scaling relationship between the adsorption energies of the *Had/*CO intermediate. Recently, tandem catalysts consisting of multicomponents have been developed to improve the surface coverage of *Had or *CO by enhancing water dissociation or CO2-to-CO production on auxiliary sites. In this context, we provide a comprehensive overview of the design principles of tandem catalysts based on reaction pathways for C2+ products. Moreover, the development of cascade CO2RR catalytic systems that integrate CO2RR with downstream catalysis has expanded the range of potential CO2 upgrading products. Therefore, we also discuss recent advancements in cascade CO2RR catalytic systems, highlighting the challenges and perspectives in these systems.  相似文献   

11.
The practicality of the electrochemical CO2 reduction technique depends on the development of cost-effective, robust, and highly selective catalysts. To achieve this goal, we have engineered self-supported 3D electrodes composed of Pd-Zn nanosheets (NSs) for CO2 electrochemical reduction to CO with minimal Pd content. This innovative electrode with an increased surface area was created using an electrodeposition method employing a dynamic hydrogen bubble template. By precisely adjusting the Pd content, we improved the thickness, porosity, and surface area of the electrodes, resulting in a CO2-to-CO selectivity reaching as high as 88.5 %, with an average of at least 80 % sustained over 10 hours. This remarkable improved activity can be attributed to the synergistic effects of an appropriate Pd/Zn atomic ratio as well as to the large surface area of nanosheets structures with rich edge active sites. Furthermore, to get around the limitations of CO2 mass transfer, reactions were done at high pressures conditions ranging from 3 to 9.5 bar; this strategic approach yielded an outstanding partial current density of −304.6 mA cm−2 for CO. These noteworthy findings establish concepts for constructing effective and earth-abundant CO-producing electrocatalysts.  相似文献   

12.
Renewable electricity driven electrocatalytic CO2 reduction reaction (CO2RR) is a promising solution to carbon neutralization, which mainly generate simple carbon products. It is of great importance to produce more valuable C−N chemicals from CO2 and nitrogen species. However, it is challenging to co-reduce CO2 and NO3/NO2 to generate aldoxime an important intermediate in the electrocatalytic C−N coupling process. Herein, we report the successful electrochemical conversion of CO2 and NO2 to acetamide for the first time over copper catalysts under alkaline condition through a gas diffusion electrode. Operando spectroelectrochemical characterizations and DFT calculations, suggest acetaldehyde and hydroxylamine identified as key intermediates undergo a nucleophilic addition reaction to produce acetaldoxime, which is then dehydrated to acetonitrile and followed by hydrolysis to give acetamide under highly local alkaline environment and electric field. Moreover, the above mechanism was successfully extended to the formation of phenylacetamide. This study provides a new strategy to synthesize highly valued amides from CO2 and wastewater.  相似文献   

13.
Carbonylation of ethanol with CO2 as carbonyl source into value-added esters is of considerable significance and interest, while remains of great challenge due to the harsh conditions for activation of inert CO2 in that the harsh conditions result in undesired activation of α-C−H and even cleavage of C−C bond in ethanol to deteriorate the specific activation of O−H bond. Herein, we propose a photo-thermal cooperative strategy for carbonylation of ethanol with CO2, in which CO2 is activated to reactive CO via photo-catalysis with the assistance of *H from thermally-catalyzed dissociation of alcoholic O−H bond. To achieve this proposal, an interfacial site and oxygen vacancy both abundant SrTiCuO3-x supported Cu2O (Cu2O-SrTiCuO3-x) has been designed. A production of up to 320 μmol g−1 h−1 for ethyl formate with a selectivity of 85.6 % to targeted alcoholic O−H activation has been afforded in photo-thermal assisted gas-solid process under 3.29 W cm−1 of UV/Vis light irradiation (144 °C) and 0.2 MPa CO2. In the photo-driven activation of CO2 and following carbonylation, CO2 activation energy decreases to 12.6 kJ mol−1, and the cleavage of alcoholic α-C−H bond has been suppressed.  相似文献   

14.
Engineering electronic properties by elemental doping is a direct strategy to design efficient catalysts towards CO2 electroreduction. Atomically thin SnS2 nanosheets were modified by Ni doping for efficient electroreduction of CO2. The introduction of Ni into SnS2 nanosheets significantly enhanced the current density and Faradaic efficiency for carbonaceous product relative to pristine SnS2 nanosheets. When the Ni content was 5 atm %, the Ni‐doped SnS2 nanosheets achieved a remarkable Faradaic efficiency of 93 % for carbonaceous product with a current density of 19.6 mA cm?2 at ?0.9 V vs. RHE. A mechanistic study revealed that the Ni doping gave rise to a defect level and lowered the work function of SnS2 nanosheets, resulting in the promoted CO2 activation and thus improved performance in CO2 electroreduction.  相似文献   

15.
Electroreduction of CO2 into valuable chemicals and fuels is a promising strategy to mitigate energy and environmental problems. However, it usually suffers from unsatisfactory selectivity for a single product and inadequate electrochemical stability. Herein, we report the first work to use cationic Gemini surfactants as modifiers to boost CO2 electroreduction to formate. The selectivity, activity and stability of the catalysts can be all significantly enhanced by Gemini surfactant modification. The Faradaic efficiency (FE) of formate could reach up to 96 %, and the energy efficiency (EE) could achieve 71 % over the Gemini surfactants modified Cu electrode. In addition, the Gemini surfactants modified commercial Bi2O3 nanosheets also showed an excellent catalytic performance, and the FE of formate reached 91 % with a current density of 510 mA cm−2 using the flow cell. Detailed studies demonstrated that the double quaternary ammonium cations and alkyl chains of the Gemini surfactants played a crucial role in boosting electroreduction CO2, which can not only stabilize the key intermediate HCOO* but also provide an easy access for CO2. These observations could shine light on the rational design of organic modifiers for promoted CO2 electroreduction.  相似文献   

16.
The dispersion of nickel catalysts is crucial for the catalytic ability of CO2 methanation, which can be influenced by the fabrication method and the operation process of the catalysts. Therefore, a series of fabrication methods, including ultrasonic, hydrothermal, microwave, and co-precipitation, have been applied to prepare 25Ni-5Er-Al2O3 catalysts. The fabrication method can partially influence the structural and catalytic activity of the nickel aluminate catalysts. Among the catalysts modified by Erbium prepared with various methods, the catalyst fabricated by ultrasonic pathway exhibited better catalytic performance and CH4 selectivity especially, at a temperature (400 ℃). The impact of the temperature of the reaction (200–500 °C) was examined under a stoichiometric precursor ratio of (H2:CO2) = 4: 1, atmospheric pressure, and space velocity (GHSV) of 25000 mL/gcath. The results demonstrate that the ultrasonic method is strongly efficient for fabricating Ni-based catalysts with a high BET surface area of about 190.33 m2g?1. The catalyst composed via the ultrasonic technique has 69.38 % carbon dioxide conversion and 100 % methane selectivity at 400 °C for excellent catalytic performance in CO2 methanation reactions. The fabrication effect can be associated with its high surface area, which is achieved via the hot spot mechanism. Besides, the addition of Erbium promotes the Ni dispersion on the supports and stimulates the positive reaction because of the erbium oxygen vacancies.  相似文献   

17.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   

18.
Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2) reduction half-reaction and the water (H2O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust −C=C− bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron–hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 μmol g−1 h−1 with about 100 % selectivity) and oxygen (O2) evolution (90.2 μmol g−1 h−1) among all the porous catalysts in CO2 reduction with H2O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure–function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.  相似文献   

19.
Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4, but selective and efficient synthesis of higher alcohols (C2+OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+OH from CO2 hydrogenation over K-modified Ni−Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni−Zn carbide (K-Ni3Zn1C0.7) by carburization of Zn-incorporated Ni0, which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C−C coupling to C2+OH rather than conventional CH4. This work opens a new catalytic avenue toward CO2 hydrogenation to C2+OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.  相似文献   

20.
The reaction of propargylic amines and CO2 can provide high-value-added chemical products. However, most of catalysts in such reactions employ noble metals to obtain high yield, and it is important to seek eco-friendly noble-metal-free MOFs catalysts. Here, a giant and lantern-like [Zn116] nanocage in zinc-tetrazole 3D framework [Zn22(Trz)8(OH)12(H2O)9⋅8 H2O]n Trz=(C4N12O)4− ( 1 ) was obtained and structurally characterized. It consists of six [Zn14O21] clusters and eight [Zn4O4] clusters. To our knowledge, this is the highest-nuclearity nanocages constructed by Zn-clusters as building blocks to date. Importantly, catalytic investigations reveal that 1 can efficiently catalyze the cycloaddition of propargylic amines with CO2, exclusively affording various 2-oxazolidinones under mild conditions. It is the first eco-friendly noble-metal-free MOFs catalyst for the cyclization of propargylic amines with CO2. DFT calculations uncover that ZnII ions can efficiently activate both C≡C bonds of propargylic amines and CO2 by coordination interaction. NMR and FTIR spectroscopy further prove that Zn-clusters play an important role in activating C≡C bonds of propargylic amines. Furthermore, the electronic properties of related reactants, intermediates and products can help to understand the basic reaction mechanism and crucial role of catalyst 1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号