首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

2.
We prepared 0.53 and 0.32 mm id monolithic microcolumns by in situ copolymerization of a zwitterionic sulfobetaine functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) and dioxyethylene dimetacrylate crosslinkers. The columns show a dual retention mechanism (hydrophilic‐interaction mode) in acetonitrile‐rich mobile phases and RP in highly aqueous mobile phases. The new 0.53 mm id columns provided excellent reproducibility, retention, and separation selectivity for phenolic acids and flavonoids. The new zwitterionic monolithic columns are highly orthogonal, with respect to alkyl silica stationary phases, not only in the hydrophilic‐interaction mode but also in the RP mode. The optimized monolithic zwitterionic microcolumn of 0.53 mm id was employed in the first dimension, either in the aqueous normal‐phase or in the RP mode, coupled with a short nonpolar core‐shell column in the second dimension, for comprehensive 2D LC separations of phenolic and flavonoid compounds. When the 2D setup with the sulfobetaine–BIGDMA column was used for repeated sample analysis, with alternating gradients of decreasing (hydrophilic‐interaction mode), and increasing (RP mode) concentration of acetonitrile on the sulfobetaine–BIGDMA column in the first dimension, useful complementary information on the sample could be obtained.  相似文献   

3.
Hydrophilic interaction chromatography (HILIC) is valuable alternative to reversed-phase liquid chromatography separations of polar, weakly acidic or basic samples. In principle, this separation mode can be characterized as normal-phase chromatography on polar columns in aqueous-organic mobile phases rich in organic solvents (usually acetonitrile). Highly organic HILIC mobile phases usually enhance ionization in the electrospray ion source of a mass spectrometer, in comparison to mobile phases with higher concentrations of water generally used in reversed-phase (RP) LC separations of polar or ionic compounds, which is another reason for increasing popularity of this technique. Various columns can be used in the HILIC mode for separations of peptides, proteins, oligosaccharides, drugs, metabolites and various natural compounds: bare silica gel, silica-based amino-, amido-, cyano-, carbamate-, diol-, polyol-, zwitterionic sulfobetaine, or poly(2-sulphoethyl aspartamide) and other polar stationary phases chemically bonded on silica gel support, but also ion exchangers or zwitterionic materials showing combined HILIC-ion interaction retention mechanism. Some stationary phases are designed to enhance the mixed-mode retention character. Many polar columns show some contributions of reversed phase (hydrophobic) separation mechanism, depending on the composition of the mobile phase, which can be tuned to suit specific separation problems. Because the separation selectivity in the HILIC mode is complementary to that in reversed-phase and other modes, combinations of the HILIC, RP and other systems are attractive for two-dimensional applications. This review deals with recent advances in the development of HILIC phase separation systems with special attention to the properties of stationary phases. The effects of the mobile phase, of sample structure and of temperature on separation are addressed, too.  相似文献   

4.
Hydrophilic interaction chromatography (HILIC) is becoming increasingly popular for separation of polar samples on polar columns in aqueous-organic mobile phases rich in organic solvents (usually ACN). Silica gel with decreased surface concentration of silanol groups, or with chemically bonded amino-, amido-, cyano-, carbamate-, diol-, polyol-, or zwitterionic sulfobetaine ligands are used as the stationary phases for HILIC separations, in addition to the original poly(2-sulphoethyl aspartamide) strong cation-exchange HILIC material. The type of the stationary and the composition of the mobile phase play important roles in the mixed-mode HILIC retention mechanism and can be flexibly tuned to suit specific separation problems. Because of excellent mobile phase compatibility and complementary selectivity to RP chromatography, HILIC is ideally suited for highly orthogonal 2-D LC-LC separations of complex samples containing polar compounds, such as peptides, proteins, oligosaccharides, drugs, metabolites and natural compounds. This review attempts to present an overview of the HILIC separation systems, possibilities for their characterization and emerging HILIC applications in 2-D off-line and on-line LC-LC separations of various samples, in combination with RP and other separation modes.  相似文献   

5.
Creatine, phosphocreatine, and adenine nucleotides are highly polar markers of myocardial metabolism that are poorly retained on RP silica sorbents. Zirconia represents an alternative material to silica with high promise to be used in hydrophilic interaction chromatography (HILIC). This study describes a first systematic investigation of the ability of ZrO2 to separate creatine, phosphocreatine, adenosine 5′‐monophosphate, adenosine 5′‐diphosphate, and adenosine 5′‐triphosphate and compares the results with those obtained on TiO2. All analytes showed a HILIC‐like retention pattern when mobile phases of different strengths were tested. Stronger retention and better column performance were achieved in organic‐rich mobile phases as compared to aqueous conditions, where poor retention and insufficient column performance were observed. The effect of mobile phase pH and ionic strength was evaluated as well. The analysis of myocardial tissue demonstrated that all compounds were separated in a relevant biological material and thus proved ZrO2 as a promising phase for HILIC of biological samples that deserves further investigation.  相似文献   

6.
Online combination of hydrophilic interaction chromatography (HILIC) and RP chromatography for separation of tryptic peptides is a challenging approach due to the incompatibility of direct loading HILIC fractions on the RP trapping column. High amounts of organic modifiers in loading solvents decrease the binding efficiency of tryptic peptides on C18 phases and lower the number of identifications. A 500 μL loop upfront of the trapping column filled with aqueous mobile phase was employed as a mixing chamber and enabled direct injections and improved saliva protein identification rates of HILIC fractions.  相似文献   

7.
A new stationary phase demonstrated effective separation towards polar analytes or their counterions within a single run.  相似文献   

8.
The determination of catecholamines in urine was investigated using hydrophilic interaction chromatography (HILIC) as an alternative to the commonly used reversed-phase (RP) method. A number of different approaches were explored, including per-aqueous liquid chromatography (PALC), and HILIC using bare silica, bonded amide and zwitterionic phases. The bonded phases gave superior results in terms of both peak shape and selectivity. The mechanism of the HILIC separation was investigated particularly with respect to the contribution of ion exchange to retention. The electrochemical detection of catecholamines was studied and optimised in typical HILIC mobile phases that contain high concentrations of acetonitrile. HILIC offered a number of advantages over the conventional RP approach, giving good retention of the solutes without use of ion pair reagents, the absence of which also would facilitate detection by mass spectrometry. HILIC used in conjunction with solid phase extraction based on RP also gives orthogonal separation mechanisms in the cleanup and analysis steps. Furthermore, good recoveries from the cleanup stage were obtained, as high concentrations of acetonitrile can be used as eluting solvent that are fully compatible with HILIC, and lipophilic impurities are eluted close to the void volume of the HILIC column.  相似文献   

9.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

10.
Noga  Sylwia  Jandera  Pavel  Buszewski  Bogus&#;aw 《Chromatographia》2013,76(15):929-937

The goal of the study was to investigate separation mechanism of selected “essential” amino acids (leucine, isoleucine, threonine, tryptophan, proline, and glycine) and vitamin B6 in hydrophilic interaction liquid chromatography (HILIC) with the evaporative light scattering detection. Chromatographic measurements were made on three different HILIC columns: amide-silica (TSK-gel Amide-80), amino-silica (TSK-gel NH2-100), and cross-linked diol (Luna HILIC). The retention behaviour of the analytes was investigated as a function of different binary hydro-organic mobile phases containing 10–90 % (v/v) acetonitrile. The compounds studied were separated under isocratic and gradient conditions. The best results of tested biologically active compounds separation were obtained on the TSK-gel NH2-100 column. TSK-gel NH2 column showed mixed HILIC–ion-exchange mechanism, the highest separation efficiency and better selectivity and resolution for tested analytes than the other studied column, especially at concentration of water in mobile phase lower than 30 % (v/v). Special attention was dedicated to the study of interactions among the stationary phase, mobile phase and the analytes.

  相似文献   

11.
Separation science is an art of obtaining adequate resolution of the desired compounds in minimum time, and with minimum effort in terms of sample preparation and data evaluation. In LC, where selectivity is a main driving force for separation, the availability of different separation modes capable of operating at high flow rates is a way to make combined optimal use of selectivity, efficiency, and speed. The separation of polar and hydrophilic compounds is problematic in RP LC due to the poor retention. Hydrophilic interaction liquid chromatography (HILIC) is a more straightforward separation mode to address this problem. Herein, it is shown that separations in HILIC mode are equally efficient as for RP, providing a potential for very fast separations on short columns. This is not only facilitated by the low viscosity of the mobile phase compositions used, compared to typical RP eluents, but also due to higher column permeability. To exemplify this, baseline separations of uracil and cytosine are shown in less than 4 s and of Tamiflu and its main metabolite in less than 40 s, both under isocratic conditions. HILIC must therefore be considered having potential for high throughput purposes, and being an attractive candidate as the second separation dimension in 2-D HPLC.  相似文献   

12.
The goal of the study was to investigate separation mechanism of selected “essential” amino acids (leucine, isoleucine, threonine, tryptophan, proline, and glycine) and vitamin B6 in hydrophilic interaction liquid chromatography (HILIC) with the evaporative light scattering detection. Chromatographic measurements were made on three different HILIC columns: amide-silica (TSK-gel Amide-80), amino-silica (TSK-gel NH2-100), and cross-linked diol (Luna HILIC). The retention behaviour of the analytes was investigated as a function of different binary hydro-organic mobile phases containing 10–90 % (v/v) acetonitrile. The compounds studied were separated under isocratic and gradient conditions. The best results of tested biologically active compounds separation were obtained on the TSK-gel NH2-100 column. TSK-gel NH2 column showed mixed HILIC–ion-exchange mechanism, the highest separation efficiency and better selectivity and resolution for tested analytes than the other studied column, especially at concentration of water in mobile phase lower than 30 % (v/v). Special attention was dedicated to the study of interactions among the stationary phase, mobile phase and the analytes.  相似文献   

13.
The application of enhanced fluidity liquid (EFL) mobile phases to improving isocratic chromatographic separation of nucleosides in hydrophilic interaction liquid chromatography (HILIC) mode is described. The EFL mobile phase was created by adding carbon dioxide to a methanol/buffer solution. Previous work has shown that EFL mobile phases typically increase the efficiency and the speed of the separation. Herein, an increase in resolution with the addition of carbon dioxide is also observed. This increase in resolution was achieved through increased selectivity and retention with minimal change in separation efficiency. The addition of CO2 to the mobile phase effectively decreases its polarity, thereby promoting retention in HILIC. Conventional organic solvents of similar nonpolar nature cannot be used to achieve similar results because they are not miscible with methanol and water. The separation of nucleosides with methanol/aqueous buffer/CO2 mobile phases was also compared to that using acetonitrile/buffer mobile phases. A marked decrease in the necessary separation time was noted for methanol/aqueous buffer/CO2 mobile phases compared to acetonitrile/buffer mobile phases. There was also an unusual reversal in the elution order of uridine and adenosine when CO2 was included in the mobile phase.  相似文献   

14.
Acetonitrile–water extracts of several Ganoderma species – a mushroom being used in Traditional Chinese Medicine – were analysed by liquid chromatography–UV detection in hydrophilic interaction chromatography (HILIC) and reversed-phase (RP) elution modes. A set of six polar stationary phases was used for HILIC runs. These columns had remarkably different separation properties under binary gradient conditions as evinced by hierarchical cluster analysis on retention patterns of seven test compounds. Complementary measurements of RP chromatograms were carried out on a C18 packing. Injection precision (n = 5) and intra-day precision (n = 5) were each <2.0% RSD (HILIC) and <0.7% RSD (RP) for relative retention times of main characteristic peaks of a sample extract while for relative peak areas RSD values were max. 6.8%. Repetitive analysis (n = 7) of a processed sample stored in the autosampler tray for 48 h was used to confirm within-sequence sample stability. Eleven Ganoderma lucidum samples served as training set for the construction of column-specific simulated mean chromatograms. Validation with twelve samples comprising G. lucidum, Ganoderma sinense, Ganoderma atrum, and Ganoderma tsugae by correlation coefficient based similarity evaluation of peak patterns showed that a discrimination of G. lucidum from other Ganoderma species by means of chromatographic fingerprints is conceptually possible on all columns, except of a bare silica packing. The importance of the combined use of RP and HILIC fingerprints to improve the rate of correct sample classification was demonstrated by the fact that each one G. sinense specimen was wrongly assigned being G. lucidum by all HILIC fingerprints but not the RP fingerprint and vice versa. The present data revealed that (i) the analysis of complex biological materials by quasi orthogonal chromatographic modes such as HILIC and RP may deliver more discriminative information than single-mode approaches which strengthens the reliability of fingerprint-based sample classification and (ii) different retention and selectivity characteristics of polar bonded silica packings in the HILIC elution mode may only have a minor impact on chemometric sample discrimination capabilities in such kind of pattern-oriented metabolomics separation problems.  相似文献   

15.
Correspondence factor analysis (CFA) was employed to study the selectivity of 14 HPLC systems. The tested LC systems were classified as reversed-phase (RP), ion-exchange (IE) and hydrophilic interaction chromatography (HILIC) modes. It was found that the retentions of the hydrophilic solutes on HILIC column were significantly influenced by the second-order effects besides their hydrophilic properties. Organic modifiers and residue silanol groups on silica surface both participated in retention. HypersilTM amino column performed separation in the HILIC mode at appropriate conditions, and its retention mechanism was more similar to that of HILIC silica column than that of HILIC column coating poly(aspartamide) groups.  相似文献   

16.
以丙烯酸二甲氨基乙酯(DMAEA)和1,3-丙磺酸内酯为原料,合成了含磺酸甜菜碱型两性离子的N,N-二甲基-N-丙烯酰氧乙基-N-丙基磺酸铵(DMAEAPS)功能单体,通过原子转移自由基聚合(ATRP)技术将其接枝到硅胶表面,制备了磺酸甜菜碱型两性离子色谱固定相(Sil-DMAEAPS)。研究了该固定相对安息香、维生素B6、芸香叶苷、对香豆酸和咖啡酸5种极性溶质的亲水作用色谱分离性能。结果表明,在典型的亲水作用色谱条件下,极性溶质的保留主要由静电作用和亲水作用控制;而在典型的反相色谱条件下,极性溶质则表现出反相柱的分离特征。与ZIC-HILIC商品柱进行对比,自制色谱柱对5种极性溶质表现出不同的分离选择性。将自制色谱柱用于芦丁片中芸香叶苷含量的测定,操作方法简单,为极性样品的分离提供了新方法。  相似文献   

17.
The potential of 1.7 μm ethylene bridged hybrid silica phase was investigated for the separation of twelve imidazolium-based ionic liquid cations. U-shaped retention profile was observed for all solutes with an increase in retention at both low and high acetonitrile content. Chromatographic behaviour of imidazolium cations in both hydrophilic interaction chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes was studied by varying key parameters such as buffer concentration and pH, acid additive, organic modifier and column temperature. Experimental data provided some evidences that under PALC conditions cationic solutes are retained predominantly by mixed hydrophobic/ion-exchange interactions. In the HILIC mode, both partitioning and ion-exchange interactions are responsible for the retention of solutes. Compared to PALC, HILIC provided significantly higher efficiencies with less or even no peak tailing, better separation selectivity and greater resistance to overload. In PALC mode gradient elution was required to achieve adequate retentivity of all solutes but selectivity was not sufficient to distinguish between solutes with very similar hydrophobicity. In contrast, under HILIC conditions twelve solutes were almost completely resolved in less than 4 min by using isocratic elution. Summarizing, it could be concluded that ethylene bridged hybrid silica column providing a dual retention mechanism offers the possibility of selecting between the two retention modes with opposite separation selectivity, just by changing the composition of the mobile phase.  相似文献   

18.
周行  陈佳  张樱山  赵亮  邱洪灯 《色谱》2020,38(4):438-444
通过表面自由基链转移聚合和亲核取代反应制备了一种新型奎宁功能化聚乙烯咪唑修饰硅胶亲水色谱固定相(Sil-PIm-Qn)。通过元素分析和红外光谱对该固定相进行表征,并在亲水相互作用色谱(HILIC)模式下对其进行了色谱性能评价。结果表明,该固定相对5种氨基酸、9种磺胺以及10种碱基核苷有较好的分离选择性。实验考察了流动相中有机相乙腈体积分数和水相中乙酸铵浓度对待分离物质保留行为的影响,并进一步对固定相分离的重复性进行了考察,其保留时间的相对标准偏差(RSD)为0.08%~2.30%(n=10)。该亲水色谱固定相制备方法简单,并且表现出了优异的亲水色谱分离性能,有望在磺胺类药物及生物样品中碱基核苷等亲水性物质的分离分析中有一定应用。  相似文献   

19.
In hydrophilic interaction chromatography (HILIC), best results are obtained with high concentrations of ACN. In the framework of green chromatography and the present shortage and very high price of this hazardous solvent, reversing the stationary phase to apolar and the mobile phase to aqueous can be of interest for several applications. The features of the aqueous RP technique called per aqueous LC (PALC) are illustrated with the analysis of catecholamines, nucleobases, acids, and amino acids. The ca. three-fold higher viscosity of water compared to ACN has consequences on the shape of the Van Deemter plot. For dopamine (N = 26.450 on a 25 cm×4.6 mm id, 5 μm bare silica column), a reduced plate height of 1.9 at an uopt of 0.3 mm/s was calculated. The plate number, however, strongly depends on pH and ionic strength. As in RP separations, retention is shortened by adding an organic modifier. In the framework of green chromatography, the biodegradable ethanol was used. On the other hand, retention increased by lengthening the carbon chain of ion-pair reagents supporting the RP mechanism as well.  相似文献   

20.
An analytical method based on online combination of polymer monolith microextraction (PMME) technique with hydrophilic interaction LC (HILIC)/MS is presented. The extraction was performed with a poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic column while the subsequent separation was carried out on a Luna silica column by HILIC. After 1:1 v/v dilution with 20 mM phosphate solution at pH 7.0 and centrifugation, urine sample was directly used for extraction. After optimization, 85% ACN (containing 0.3% formic acid v/v) was used for rapid online elution, which was also the mobile phase in HILIC to avoid band broadening during separation or carry‐over that was usually observed in PMME‐RP LC system. Online automation of extraction and separation procedures was realized under the control of a program in this study. The developed method was applied to rapid and sensitive monitoring of three β2‐agonist traces in human urine. The LODs (S/N = 3) of the method were found to be 0.05–0.09 ng/mL of β2‐agonists in urine. The recoveries of three β2‐agonists spiked in five different urine samples ranged from 79.8 to 119.8%, with RSDs less than 18.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号