首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Yongmei  Liao  Mengya  Zhang  Cuiwei  Bai  Yuli  Song  Honglian  Zhang  Yiwen  Wang  Xin 《Chromatographia》2015,78(23):1485-1489

A precise and sensitive LC method for the determination of repertaxin enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 2.0 was accomplished within 20 min using a Chiralpak AD-H column (250 × 4.6 mm; particle size 5 μm) and n-hexane:2-propanol (90:10 v/v) as mobile phase at a flow rate of 1 mL min−1. Eluted analytes were monitored by UV detection at 260 nm. The effects of mobile phase composition, temperature and flow rate on enantiomeric selectivity and on resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 0.002 and 1.0 mg mL−1 (n = 3), and relative standard deviation (RSD) of the inter-batch assay and intra-batch assay was less than 1.27 and 1.16 %. LOD and LOQ for repertaxin were 0.65 and 2.19 μg mL−1; those for its enantiomer were 0.70 and 2.34 μg mL−1, respectively. The method was evaluated and validated by analysis of bulk samples of repertaxin of different enantiomeric purity. It was demonstrated that the method was accurate, robust, and sensitive, and enabled practical analysis of real samples.

  相似文献   

2.
A sensitive and accurate LC method for the determination of AT13148 enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 1.8 was accomplished within 15 min using a Chiralpak AD-H column (250 × 4.6 mm; particle size 5 μm) and n-hexane: 2-propanol: diethylamine (85:15:0.1, v/v) as mobile phase at a flow rate of 1 mL min?1. Eluted analytes were monitored by UV absorption at 254 nm. The effects of mobile phase components, temperature and flow rate on enantiomeric selectivity and resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 7 and 500 μg mL?1 (n = 11), and the recoveries between 98.24 and 100.99% were obtained, with relative standard deviation lower than 1.32%. LOD and LOQ for AT13148 were 2.46 and 7.38 μg mL?1 and for its enantiomer were 2.54 and 7.49 μg mL?1, respectively. It was demonstrated that the developed method was accurate, robust and sensitive for the determination of enantiomeric purity of AT13148, especially for the analysis of bulk samples.  相似文献   

3.
A sensitive and accurate LC method was developed and further validated for the determination of enantiomeric purity of GSK962040. Before separation, a pre-column derivatization procedure was performed. Baseline separation with a resolution higher than 1.9 was accomplished within 15 min using a Chiralpak AD-H (250 × 4.6 mm; particle size 5 μm) column, with n-hexane: 2-propanol (85:15 v/v) as mobile phase at a flow rate of 1 mL min?1. The eluted analytes were subsequently detected with a UV detector at 260 nm. The effects of mobile phase components and temperature on enantiomeric selectivity as well as resolution of enantiomers were thoroughly investigated. The calibration curves were plotted within the concentration range between 4 and 200 μg mL?1 (n = 8), and recoveries between 98.15 and 101.48% were obtained, with relative standard deviation (RSD) lower than 1.42%. The LOD and LOQ for the Boc-GSK962040 were 1.23 and 4.15 μg mL?1 and for its enantiomer were 1.38 and 4.76 μg mL?1, respectively. The developed method was also evaluated and validated by analyzing bulk samples with different enantiomeric ratios of GSK962040. It was demonstrated that the method was accurate, robust and sensitive, and also had practical utilities for real analysis.  相似文献   

4.
A sensitive and accurate liquid chromatographic method for the determination of AR-42 enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 1.9 was accomplished within 10 min using a CHIRALPAK AD column (250 mm × 4.6 mm; particle size 5 μm) and n-hexane/2-propanol/diethylamine (75:25:0.1 v/v/v) as mobile phase at a flow rate of 1 mL min?1. Eluted analytes were monitored by UV absorption at 260 nm. The effects of mobile phase components, temperature and flow rate on enantiomeric selectivity and resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 0.001 and 0.5 mg mL?1 (n = 10), and the recoveries between 98.23 and 101.87% were obtained, with relative standard deviation lower than 1.31%. Limit of detection and limit of quantitation for AR-42 were 0.39 and 1.28 μg mL?1 and for its enantiomer were 0.36 and 1.19 μg mL?1, respectively. It was demonstrated that the developed method was accurate, robust and sensitive for the determination of enantiomeric purity of AR-42, especially for the analysis of bulk samples.  相似文献   

5.

A stability-indicating ultra-high-performance liquid chromatography (UHPLC) method with a diode array detector was developed and validated for the determination of cis/trans isomers of perindopril l-arginine in bulk substance and pharmaceutical dosage form. The separation was achieved on a Poroshell 120 Hilic (4.6 × 150 mm, 2.7 µm) column using a mobile phase composed of acetonitrile–0.1 % formic acid (20:80 v/v) at a flow rate of 1 mL min−1. The injection volume was 5.0 µL and the wavelength of detection was controlled at 230 nm. The selectivity of the UHPLC-DAD method was confirmed by determining perindopril l-arginine in the presence of degradation products formed during acid–base hydrolysis and oxidation as well as degradation in the solid state, at an increased relative air humidity and in dry air. The method’s linearity was investigated in the ranges 0.40–1.40 µg mL−1 for isomer I and 0.40–2.40 µg mL−1 for isomer II of perindopril l-arginine. The UHPLC-DAD method met the precision and accuracy criteria for the determination of the isomers of perindopril l-arginine. The limits of detection and quantitation were 0.1503 and 0.4555 µg mL−1 for isomer I and 0.0356 and 0.1078 µg mL−1 for isomer II, respectively.

  相似文献   

6.
Hadad  Ghada M.  Emara  Samy  Mahmoud  Waleed M. M. 《Chromatographia》2009,70(11):1593-1598

A simple and reliable liquid chromatographic method has been developed and validated for the determination of cefdinir in human urine and capsule samples. A chromatographic separation was achieved on a C18 column using a mobile phase consisting of potassium dihydrogen phosphate (10 mM, pH 4.5)–acetonitrile (90:10, v/v). Quantitation was achieved with UV detection at 285 nm, based on peak area with linear calibration curve at a concentration range of 0.7–39 µg mL−1. This method was successfully applied for the establishment of an urinary excretion pattern after oral dose.

  相似文献   

7.

A selective and specific high-performance liquid chromatography method for the determination of daclatasvir enantiomers has been developed and validated. Various immobilized polysaccharide-based chiral stationary phases were used to define a separation strategy utilizing normal-phase and polar organic chromatography modes. Excellent resolution between daclatasvir and its enantiomer was achieved on amylose tris (3-chlorophenylcarbamate) stationary phase, namely CHIRALPAK ID-3, using binary gradient containing acetonitrile:diethylamine and methanol:diethylamine as the mobile phase. The flow rate of the mobile phases was maintained at 1.0 mL min−1 while the column oven temperature was maintained at 40 °C. The column effluent was monitored by UV detection at 315 nm. In comparison with isocratic method, the binary gradient method offered excellent peak shape and improved resolution between daclatasvir and its enantiomer while maintaining the specificity with diastereomers. The method was found to be precise, accurate, and linear (R 2 > 0.999). Limit of detection and limit of quantitation of the enantiomer were found to be 0.083 µg mL−1 as and 0.25 µg mL−1, respectively. Recovery of the enantiomer was found to be in the range of 90 to 112 %.

  相似文献   

8.
Wang  Huan  Chen  Yan  Zhou  Jia  Ma  Chen  Chen  Yuancheng  Liu  Xiaoquan 《Chromatographia》2008,67(11):875-881

A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL−1 in plasma and 0.32–20 μg mL−1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.

  相似文献   

9.

A simple, rapid, and stability-indicating reversed-phase high-performance liquid chromatographic (LC) method for analysis for dutasteride has been successfully developed. Chromatography was performed on a 150 mm × 4.6 mm C18 column with acetonitrile–water 60:40 (v/v) as isocratic mobile phase at 1.0 mL min−1. Ultraviolet detection of dutasteride was at 210 nm. Its retention time was approximately 10 min and its peak was symmetrical. Response was a linear function of concentration over the range 0.2–1 μg mL−1 (R 2 = 0.997) and the limits of detection and quantitation were was 0.05 and 0.10 μg mL−1, respectively. The method was validated for linearity, precision, repeatability, sensitivity, and selectivity. Selectivity was validated by subjecting dutasteride stock solution to photolytic, acidic, basic, oxidative, and thermal degradation. The peaks from the degradation products did not interfere with that from dutasteride. The method was used to quantify dutasteride in pharmaceutical preparations.

  相似文献   

10.
Ozkan  Cansel Kose  Kurbanoglu  Sevinc  Esim  Ozgur  Savaser  Ayhan  Ozkan  Sibel A.  Ozkan  Yalcin 《Chromatographia》2016,79(17):1143-1151

In the proposed work, the simultaneous analysis of amlodipine–rosuvastatin and amlodipine–atorvastatin in their dosage forms was achieved. Simultaneous dissolution profiles of the amlodipine–rosuvastatin and amlodipine–atorvastatin tablets are realized using Apparatus II with a simple, accurate and precise RP-LC method. The mobile phase consisting of 0.2 % H3PO4 and pH 5:methanol:acetonitrile (46:27:27) was used. The samples of 10 µL were injected onto a Zorbax SB C18 (100 mm, 4.6 mm, 3.5 µm particle size) column with 1.2 µL min−1 flow rate. The samples were detected at 236 nm. By plotting peak area ratios vs. concentration, the linearity for amlodipine–rosuvastatin and amlodipine–atorvastatin was determined. With the developed RP-LC method, AML, ROS and ATOR were detected within the range of 0.25–10, 0.5–10 and 0.25–25 µg mL−1, respectively. LOD and LOQ values were also calculated as 0.028, 0.058, 0.021 and 0.095 µg mL−1, 0.195 µg mL−1, 0.070 µg mL−1 for AML, ROS and ATOR, respectively. System suitability tests parameters, such as capacity factor, selectivity to previous peak, selectivity to next peak, resolution to previous peak, resolution to next peak, tailing factor, theoretical number of plates, were performed and found coherent with the ICH guideline parameters. The proposed method has been extensively validated in terms of recovery, and recovery results were between 99 and 101 %. For proving the precision, between-day and within-day repeatability results of the method were proposed. The method can be used for the simultaneous determination of amlodipine–rosuvastatin and amlodipine–atorvastatin.

  相似文献   

11.

This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min−1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL−1 (r = 0.9999) for TR and 40–160 μg mL−1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.

  相似文献   

12.

Bosentan monohydrate (4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl) pyrimidin-4-yl]benzene-1-sulfonamide monohydrate) is a dual endothelin receptor antagonist (ERA) applied in the treatment of pulmonary arterial hypertension. To achieve effective process control of the bosentan monohydrate synthesis, it was necessary to develop a selective and not highly time-consuming method for ultra-high performance liquid chromatography (UHPLC). The method is characterized by adequate sensitivity, reproducibility and selectivity for the determination of bosentan monohydrate and related compounds from all synthetic stages. The UHPLC separation was carried out by reversed phase chromatography on the Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 µm) with a mobile phase composed of solvent A (0.1 %, v/v, acetic acid in water) and solvent B (methanol), in the gradient mode at the flow rate of 0.4 mL min−1. Limits of detection and quantification for the compounds were ≤0.1 µg mL−1 and 0.3 µg mL−1, respectively. The linearity for all related compounds was investigated as in the range for the active pharmaceutical ingredient (API) and as in the range for the in-process control. The developed method was validated according to the current guidelines, proving the suitability of the method for its intended purpose.

  相似文献   

13.

A simple, isocratic, rapid, and accurate reversed-phase high-performance liquid chromatographic method has been established for quantitative determination of zonisamide. The method is also applicable to determination of related substances in the bulk drug. Chromatographic separation was achieved on a 250 mm × 4.6 mm, 5-μm particle, C18 column; the mobile phase was a 70:30 (v/v) mixture of 0.1% (v/v) aqueous triethylamine, adjusted to pH 2.5 with dilute orthophosphoric acid, and acetonitrile. Chromatographic resolution of zonisamide from its potential impurity, A, was found to be >2. The limits of detection and quantification of zonisamide and impurity A were 0.04 and 0.12 μg mL−1, respectively, for 20 μL injection volume. Recovery of zonisamide ranged from 98.5 to 101.2% and recovery of impurity A from a sample of zonisamide ranged from 97.4 to 102.7%. The method was validated for linearity, accuracy, precision, and robustness.

  相似文献   

14.

A reversed-phase liquid chromatography (RP-LC) method was validated for the determination of rupatadine in pharmaceutical dosage forms. The LC method was carried out on a Gemini C18 column (150 mm × 4.6 mm I.D.), maintained at 30 °C. The mobile phase consisted of ammonium acetate buffer (pH 3.0; 0.01 M) with 0.05% of 1-heptanesulfonic acid–acetonitrile (71.5:28.5, v/v), run at a flow rate of 1.0 mL min−1 and using photodiode array (PDA) detection at 242 nm. The chromatographic separation was obtained with retention time of 5.15 min, and was linear in the range of 0.5–400 μg mL−1 (r = 0.9999). The specificity and stability-indicating capability of the method was proven through the degradation studies and showing also, that there was no interference of the excipients. The accuracy was 100.39% with bias lower than 0.58%. The limits of detection and quantitation were 0.01 and 0.5 μg mL−1, respectively. Moreover, method validation demonstrated acceptable results for precision, sensitivity and robustness. The proposed method was applied for the analysis of pharmaceutical dosage forms assuring the therapeutic efficacy.

  相似文献   

15.
A rapid and sensitive LC method was developed and validated for the determination of diastereomeric purity of tenofovir alafenamide (GS-7340). Baseline separation with resolution >2.8 was achieved within 17 min on a CHIRALPAK AD-3 (250 × 4.6 mm; particle size 3 μm) column using n-hexane:2-propanol (60:40 v/v) as the mobile phase at a flow rate of 1 mL min?1. The analytes were detected by UV absorbance at 260 nm. The effects of ethanol, 2-propanol, and temperature on diastereomeric selectivity and resolution of diastereomerism were evaluated. The method was extensively validated and proved to be robust. The recoveries were between 98.17 and 102.84 % with <1.93 % relative standard deviation. The limit of detection and limit of quantitation for GS-7339 were 0.77 and 2.56 μg mL?1 and for GS-7340 were 0.61 and 2.04 μg mL?1, respectively. This method was extensively proved to be accurate, stable, rapid, and sensitive for the determination of diastereomeric purity of tenofovir alafenamide (GS-7340) in bulk samples.  相似文献   

16.
Maher  Hadir M.  Youssef  Rasha M. 《Chromatographia》2009,69(3-4):345-350

Two chromatographic methods have been described for the simultaneous determination of metronidazole (MET) and spiramycin (SPY) in their mixtures. The first method was based on a high performance thin layer chromatographic (HPTLC) separation of the two drugs followed by densitometric measurements of their spots at 240 nm. The separation was carried out on Merck TLC aluminum sheets of silica gel 60 F254 using methanol: chloroform (9:1, v/v) as a mobile phase. Analysis data was used for the linear regression line in the range of 1.0–2.0 and 0.8–2.0 μg band−1 for MET and SPY, respectively. The second method was based on a reversed-phase liquid chromatographic separation of the cited drugs on a C-18 column (5 μm, 250 × 4.6 mm, i.d.). The mobile phase consisted of a mixture of phosphate buffer of pH 2.4 and acetonitrile (70:30, v/v). The separation was carried out at ambient temperature with a flow rate of 1.0 mL min−1. Quantitation was achieved with UV detection at 232 nm based on peak area with linear calibration curves at concentration ranges 0.4–50.0 and 0.5–50.0 μg mL−1 for MET and SPY, respectively. The proposed chromatographic methods were successfully applied to the determination of the investigated drugs in pharmaceutical preparations. Both methods were validated in compliance with ICH guidelines; in terms of linearity, accuracy, precision, robustness, limits of detection and quantitation and other aspects of analytical validation.

  相似文献   

17.

A simple and rapid open-vessel focused microwave-assisted extraction (FMAE) method followed by LC analysis was developed for the determination of ketoprofen lysine salt in the presence of methyl p-hydroxybenzoate and propyl p-hydroxybenzoate preservatives in topical cream. Extraction were performed in acetone/potassium dihydrogenphosphate (25 mM, pH 3.0) (70:30 v/v) by reaching a target temperature of 65 °C in a 10 min linear ramp. The chromatographic separation was performed on a Discovery RP-Amide C16 column (250 × 4.6 mm I.D., 5 μm particle size). The optimal mobile phase consisted of acetonitrile/potassium dihydrogen phosphate 25 mM adjusted to pH 3.0 with phosphoric acid (50:50 v/v). The complete analytical procedure was validated with regard to limit of quantification, linearity, precision and accuracy. The method was linear over the concentration range of 0.08–0.12 mg mL−1; the relative standard deviations of intra- and inter-day assays were 1.9–2.3 and 1.8% respectively. The limit of quantification was 0.54 μg mL−1. The proposed method shows many advantages as short extraction time, little solvent consumption without requiring further sample clean-up steps before liquid chromatographic analysis and is proposed for vast scale screening of cream dosage forms aimed to the detection of counterfeit and substandard drugs.

  相似文献   

18.

A new HPLC method based on a mixed mode stationary phase Hypersil Duet C18/SAX was developed and applied for the simultaneous determination of acetaminophen, acetylsalicylic acid and codeine. Parameters, such as the composition of the mobile phase, the nature of the organic modifier, the buffer type and the flow rate were investigated to optimize the separation. The results obtained show that the new HPLC method is rapid, highly efficient and selective. The studied compounds are separated in 10 min, by means of a mobile phase containing phosphate buffer (pH 7.50) and methanol (65:35 v v−1). The retention mechanisms of each analyte were investigated using both the linear solvent strength theory and stoichiometric displacement model. The method was fully validated and showed good linearity for each compound for a concentration ranging between 2.0 and 40 μg mL−1. The limits of detection and quantification were determined and they are lower than 0.1 μg mL−1. The precision (RSD) of the method does not exceed 2 % for all studied compounds. The method was successfully applied for the assay of acetaminophen, acetylsalicylic acid and codeine in pharmaceutical formulations.

  相似文献   

19.
Lu  Yingnian  Wu  Kefeng  Liang  Nianci  Chen  George G. 《Chromatographia》2009,70(11):1599-1603

ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic acid (5F), a diterpenoid isolated from the Chinese herb Pteris semipinnata L, has been suggested to show antitumor properties. A simple and sensitive LC method was developed for the determination of 5F in rabbit plasma. The method involved liquid–liquid extraction using ethyl acetate under acidic conditions using naproxen as an internal standard. Separations were performed on a reversed-phase column with a mixture of 1% (v/v) glacial acetic acid and methanol (45:55, v/v) as mobile phase and UV detection was utilized at 242 nm. The calibration plot was linear in the range 0.20–10.0 μg mL−1 (correlation coefficients r 2 > 0.998). The detection limit was 0.20 μg mL−1, mean extraction recovery was above 82%, intra-day precision of the method was less than 6.4%, and inter-day precision was better than 8.7%, respectively. The validated assay was found to be suitable for the pharmacokinetic study of 5F in rabbits.

  相似文献   

20.
A simple and reliable liquid chromatographic method has been developed and validated for the determination of cefdinir in human urine and capsule samples. A chromatographic separation was achieved on a C18 column using a mobile phase consisting of potassium dihydrogen phosphate (10 mM, pH 4.5)–acetonitrile (90:10, v/v). Quantitation was achieved with UV detection at 285 nm, based on peak area with linear calibration curve at a concentration range of 0.7–39 µg mL?1. This method was successfully applied for the establishment of an urinary excretion pattern after oral dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号