首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Markovnikov-selective hydrodifluoromethylation of alkynes with BrCF2H via nickel catalysis is described. This protocol proceeds via a migratory insertion of nickel hydride to alkyne followed by a CF2H-coupling, enabling straightforward access to diverse branched CF2H-alkenes with high efficiency and exclusive regioselectivity. The mild condition applies to a wide array of aliphatic and aryl alkynes with good functional group compatibility. Mechanistic studies are presented to support the proposed pathway.  相似文献   

2.
Prospects in light-driven water activation have prompted rapid progress in hydrogenation reactions. We describe a Ni2+−N4 site built on carbon nitride for catalyzed semihydrogenation of alkynes, with water supplying protons, powered by visible-light irradiation. Importantly, the photocatalytic approach developed here enabled access to diverse deuterated alkenes in D2O with excellent deuterium incorporation. Under visible-light irradiation, evolution of a four-coordinate Ni2+ species into a three-coordinate Ni+ species was spectroscopically identified. In combination with theoretical calculations, the photo-evolved Ni+ is posited as HO−Ni+−N2 with an uncoordinated, protonated pyridinic nitrogen, formed by coupled Ni2+ reduction and water dissociation. The paired Ni−N prompts hydrogen liberation from water, and it renders desorption of alkene preferred over further hydrogenation to alkane, ensuring excellent semihydrogenation selectivity.  相似文献   

3.
A Pd-catalyzed three-component syn-1,2-arylmethylation of internal alkynes (ynamides/yne-acetates/alkynes) is described. The readily available and bench stable coupling partners iodo-arenes, and methyl boronic acid are successfully used in this coupling strategy to access the methyl-containing tetra-substituted olefins; the scope is broad showing excellent functional-group tolerance. Notably, the transformation is regio- as well as stereoselective. The biologically relevant motifs (BRM) bearing iodo-arenes and ynamides are also used for the late-stage syn-1,2-arylmethylation of alkynes. Aryl-alkylation, aryl-trideuteriomethylation, alkynyl-methylation, and alkenyl-methylation of ynamides are also presented. The Me-substituted alkenes are further transformed into synthetically important β-amino-indenones and α-fluoro-α′-methyl ketones.  相似文献   

4.
Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.  相似文献   

5.
Herein, we present a manganese-catalyzed, branched-selective hydroalkenylation of terminal alkynes, under mild conditions through facile installation of a versatile silanol as a removable directing group. With an alkenyl boronic acid as the coupling partner, this reaction produces stereodefined (E,E)-1,3-dienes with high regio-, chemo- and stereoselectivity. The protocol features mild reaction conditions such as room temperature and an air atmosphere, while maintaining excellent functional group compatibility. The resulting 1,3-dienesilanol products serve as versatile building blocks, as the removal of the silanol group allows for the synthesis of both branched terminal 1,3-dienes for downstream coupling reactions, as well as stereoselective construction of linear (E,E)-1,3-dienes and (E,E,E)- or (E,E,Z)-1,3,5-trienes. In addition, a Diels–Alder cycloaddition can smoothly and selectively deliver silicon-containing pentasubstituted cyclohexene derivatives. Mechanistic investigations, in conjunction with DFT calculations, suggest a bimetallic synergistic activation model to account for the observed enhanced catalytic efficiency and good regioselectivity.  相似文献   

6.
Functionalizing specific positions on a saturated alkyl molecule is a key challenge in synthetic chemistry. Herein, a ligand-controlled regiodivergent alkylations of alkyl bromides at different positions by Ni-catalyzed alkyl-alkyl cross-electrophile coupling with the second alkyl bromides has been developed. The reaction undergoes site-selective isomerization on one alkyl bromides in a controlled manner, providing switchable access to diverse alkylated structures at different sites of alkyl bromides. The reaction occurs at three similar positions with excellent chemo- and regioselectivity, representing a remarkable ligand tuned reactivity between alkyl-alkyl cross-coupling and nickel migration along the hydrocarbon side chain. This reaction offers a catalytic platform to diverse saturated architectures by alkyl-alkyl bond-formation from identical starting materials.  相似文献   

7.
Catalytic asymmetric methods for the synthesis of synthetically versatile P-stereogenic building blocks offer an efficient and practical approach for the diversity-oriented preparation of P-chiral phosphorus compounds. Herein, we report the first nickel-catalyzed synthesis of P-stereogenic secondary aminophosphine-boranes by the asymmetric addition of primary phosphines to azo compounds. We further demonstrate that the P−H and P−N bonds on these phosphanyl hydrazine building blocks can be reacted sequentially and stereospecifically to access various P-stereogenic compounds with structural diversity.  相似文献   

8.
Catalytic, three-component, cross-electrophile reactions have recently emerged as a promising tool for molecular diversification, but studies have focused mainly on the alkyl-carbonations of alkenes. Herein, the scope of this method has been extended to conjugated dienes and silicon chemistry through silylative difunctionalization of 1,3-dienes with chlorosilanes and aryl bromides. The reaction proceeds under mild conditions to afford 1,2-linear-silylated products, a selectivity that is different to those obtained from conventional methods via an intermediary of H(C)-η3-π-allylmetal species. Preliminary mechanistic studies reveal that chlorosilane reacts with 1,3-diene first and then couples with aryl bromide.  相似文献   

9.
C-Alkyl glycosides and glycoproteins exist in natural products and are prized for their role as carbohydrate mimics in drug design. However, a practical strategy that merges glycosyl donors with readily accessible reagents, derived from abundant carboxylic acid and amine feedstocks, is yet to be conceived. Herein, we show that a nickel catalyst promotes C−C coupling between glycosyl halides and aliphatic acids or primary amines (converted into redox-active electrophiles in one step), in the presence of Hantzsch ester and LiI (or Et3N) under blue LED illumination to deliver C-alkyl glycosides with high diastereoselectivity. Mechanistic studies support the photoinduced formation of alkyl radicals that react with a glycosyl nickel species generated in situ to facilitate cross-coupling. Through this manifold, innate CO2H and NH2 motifs embedded within amino acids and oligopeptides are selectively capped and functionalized to afford glycopeptide conjugates through late-stage glycosylation.  相似文献   

10.
A rhodium(III)-catalyzed oxidative cyclization of chalcones with internal alkynes is reported, generating biologically important 3,3-disubstituted 1-indanones along with reusable aromatic aldehydes. This transformation features unique (4+1) reaction mode, excellent regioselectivity in alkyne insertion, broad substrate scope, allows for the construction of quaternary carbon centers, and is scalable. Steric hindrance from substrate and ligand probably controls the chemoselectivity of this carbocyclization. Importantly, this discovery enables a practical two-step protocol switching the overall reaction of acetophenones with internal alkynes from a (3+2) to a (4+1) annulation.  相似文献   

11.
We report that a nickel catalyst system with a modified 1,1′-spirobiindane-7,7′-diol-phosphoramidite (SPINOL) as the chiral ligand can enable the coupling of tertiary cyclobutenols and arylboroxines in an enantioconvergent manner, providing cyclobutenes with an all-carbon quaternary stereocenter in good yields (up to 84 % yield) with excellent enantioselectivities (up to >99 % ee). Moreover, the catalytic system can be applied in the kinetic resolution of cyclobutenols under slightly modified conditions, giving enantioenriched tertiary cyclobutenols with an s factor of up to >200. The reaction uses free hydroxyl groups as the leaving group without additional activation while the strained ring remains untouched. Preliminary mechanistic studies reveal that the inherent discrepant reactivity of the two enantiomers is the key to the controllable enantioconvergent and kinetic resolution process.  相似文献   

12.
Kinetic resolution is a powerful strategy for the isolation of enantioenriched compounds from racemic mixtures, and the development of selective catalytic processes is an active area of research. Here, we present a nickel-catalyzed kinetic resolution of racemic α-substituted unconjugated carbonyl alkenes via the enantio-, diastereo-, and regioselective hydroamination. This protocol affords both chiral α-substituted butenamides and syn2,3-amino acid derivatives with high enantiomeric purity (up to 99 % ee) and selectivity factor up to >684. The key to the excellent kinetic resolution efficiency is the distinctive architecture of the chiral nickel complex, which enables successful resolution and enantioselective C−N bond construction. Mechanistic investigations reveal that the unique structure of the chiral ligand facilitates a rapid migratory insertion step with one enantiomer. This strategy provides a practical and versatile approach to prepare a wide range of chiral compounds.  相似文献   

13.
A general and mild nickel-catalyzed enantioselective C(sp2)−P cross-coupling for synthesizing P-stereogenic phosphine oxides has been developed. The asymmetric alkenylation/arylation of racemic secondary phosphine oxides with alkenyl/aryl bromides generated P-stereogenic phosphine oxides with high yields and enantioselectivities. Various functional groups were tolerated, and the applications of this method were demonstrated through late-stage functionalization and product transformations.  相似文献   

14.
We report a stereoselective conversion of terminal alkynes to α-chiral carboxylic acids using a nickel-catalyzed domino hydrocarboxylation-transfer hydrogenation reaction. A simple nickel/BenzP* catalyst displayed high activity in both steps of regioselective hydrocarboxylation of alkynes and subsequent asymmetric transfer hydrogenation. The reaction was successfully applied in enantioselective preparation of three nonsteroidal anti-inflammatory profens (>90 % ees) and the chiral fragment of AZD2716.  相似文献   

15.
The hydrogenation of 1-pentyne and 2-pentyne was studied over palladium catalysts. The internal triple bond hydrogenated faster than the terminal and a particle size effect was observed on the rate of hydrogenation and isomerisation.  相似文献   

16.
Ying  Hong  ZHU  Ping  LU 《中国化学快报》2003,14(3):235-238
Unsymmetrical sulfides can be generated by the reaction of chlorine substituted aromatic compounds in sulfoxide in the presence of fluorine anion in fair yield.A likely mechanism was proposed.  相似文献   

17.
The synthesis of unsymmetrically substituted metallophthalocyanines (M = Zn, Ni, Co) bearing two phenylethyl moieties and six alkythio substituents was achieved by co-cyclotetramerization of two different phthalonitrile derivatives, namely 4,5-di(hexylthio)phthalonitrile and 4,5-di(phenylethynyl)phthalonitrile in the presence of zinc, cobalt or nickel salts. In contrast to the totally alkyne substituted phthalocyanines, these partially alkyne-containing derivatives are more soluble and their Q band absorptions are red-shifted when compared with all alkylthio phthalocyanines. Electrochemical properties of the phthalocyanines were studied by cyclic voltammetry.  相似文献   

18.
19.
Here, we report the first example of Ni-catalyzed asymmetric hydrosilylation of 1,1-disubstituted allenes with high level of regioselectivities and enantioselectivities. The key to achieve this stereoselective hydrosilylation reaction was the development of the SPSiOL-derived bisphosphite ligands (SPSiPO). This protocol features broad substrate scope, excellent functional group, and heterocycle tolerance, thus provides a versatile method for the construction of enantioenriched tertiary allylsilanes in a straightforward and atom-economic manner. DFT calculations were performed to reveal the reaction mechanism and the origins of the enantioselectivity.  相似文献   

20.
A facile and efficient method for the preparation of methyl ketones was developed in the reaction of alkynes and alkenes with PhIO-BF3·Et2O.The reaction features mild conditions,short time and metal-free catalyst.The possible mechanism for the formation of methyl ketones was proposed.H2O functions as both a nucleophile and an oxygen source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号