首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Mixing cations in the perovskite structure has been shown to improve optoelectronic device performance and stability. In particular, CsxMA1-xPbBr3 (MA = CH3NH3) has been used to build high-efficiency light-emitting diodes. Despite those advantages, little is known about the exact location of the cations in the mixed perovskite film, and how cation distribution affects device properties and stability. By using scanning tunneling microscopy , the exact atomic structure of the mixed cation CsxMA1-xPbBr3 perovskite interface is revealed. In addition, X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are used to study the stability and electronic properties of the CsxMA1-xPbBr3 perovskite film. Partial substitution of MA+ by Cs+ induces a modification of the perovskite surface structure, leading to improved device stability is shown. These results provide a better understanding of the key parameters involved in the stability of mixed cation perovskite solar cells.  相似文献   

2.
Scanning nanofocus X‐ray diffraction (nXRD) performed at a synchrotron is used to simultaneously probe the morphology and the structural properties of spin‐coated CH3NH3PbI3 (MAPI) perovskite films for photovoltaic devices. MAPI films are spin‐coated on a Si/SiO2/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) substrate held at different temperatures during the deposition in order to tune the perovskite film coverage. The films are then investigated using nXRD and scanning electron microscopy (SEM). The advantages of nXRD over SEM and other techniques are discussed. A method to visualize, selectively isolate, and structurally characterize single perovskite grains buried within a complex, polycrystalline film is developed. The results of nXRD measurements are correlated with solar cell device measurements, and it is shown that spin‐coating the perovskite precursor solution at elevated temperatures leads to improved surface coverage and enhanced solar cell performance.  相似文献   

3.
4.
5.
Understanding the effects of X-rays on halide perovskite thin films is critical for accurate and reliable characterization of this class of materials, as well as their use in detection systems. In this study, advanced optical imaging techniques are employed, both spectrally and temporally resolved, coupled with chemical characterizations to obtain a comprehensive picture of the degradation mechanism occurring in the material during photoemission spectroscopy measurements. Two main degradation pathways are identified through the use of local correlative physico-chemical analysis. The first one, at low X-Ray fluence, shows minor changes of the surface chemistry and composition associated with the formation of electronic defects. Moreover, a second degradation route occurring at higher fluence leads to the evaporation of the organic cations and the formation of an iodine-poor perovskite. Based on the local variation of the optoelectronic properties, a kinetic model describing the different mechanisms is proposed. These findings provide valuable insight on the impact of X-rays on the perovskite layers during investigations using X-ray based techniques. More generally, a deep understanding of the interaction mechanism of X-rays with perovskite thin films is essential for the development of perovskite-based X-ray detectors and solar for space applications.  相似文献   

6.
The purpose of this article is twofold. On the one hand the method of spacial resolved photoemission spectroscopy on small angle tapered cross‐sections (TCS) of complete devices is introduced to analyze simultaneously the chemical and electronic structure. On the other hand, a specific working principle of the analyzed cell type is revealed. Solar cells of 18% efficiency are prepared from a single precursor (FAPbI3)0.85(MAPbBr3)0.15 with excess of 15% PbI2. It is shown that TCS‐phototoelectron spectroscopy allows to determine the chemical composition as well as the potential distribution across the full device in the dark and in operation. The energy converting contact is the hole extraction back contact. Interestingly the photopotential in the analyzed cell type is predominantly created within the hole extraction layer and not in the n‐doped perovskite absorber. With the addition of measured core level to valence band maximum positions of the respective layers, TCS line scans lead to the band diagram for the full device. In addition, depth variations of the chemical composition are found: the bromide concentration increases while the iodide concentration is reduced near and within the mesoporous TiO2 layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号