首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roh C  Villatte F  Kim BG  Schmid RD 《Electrophoresis》2005,26(16):3055-3061
Most of the microorganism species are largely untapped and could represent an interesting reservoir of genes useful for biotechnological applications. Unfortunately, a major difficulty associated with the methods used to isolate environmental DNA is related to the contamination of the extracted material with humic substances. These polyphenolic compounds inhibit the DNA processing reactions and severely impede cloning procedures. In this work, we describe a rapid, simple, and efficient method for the purification of genomic DNA from environmental samples: we added a chromatography step directly embedded into an agarose gel electrophoresis. This strategy enabled the DNA extraction from various environmental samples and it appeared that the purity grade was compatible with digestion by restriction enzymes and polymerase chain reaction (PCR) amplifications.  相似文献   

2.
3.
With a novel and universal strategy for the cloning of multiple DNA fragments, a complex synthetic vector (pVEC100), harboring the target DNA fragments in conventional 100‐bp DNA ladder, was constructed for efficient and large‐scale production of 100‐bp DNA marker through bacteria fermentation, plasmid extraction and restrictive digestion. Since the restrictive digestion of complex vectors yields insufficient small DNA fragments, an innovative PCR model was developed as an alternative. The PCR model comprised a specially designed template vector and a unit amplification model for producing groups of small DNA fragments. The unit amplification model improved the efficiency of the PCR protocol and made it more economical and easier for small DNA fragment amplification. The approach presented in this paper – a unit cloning model for constructing complex synthetic vectors combined with the modular design of unit amplification by PCR – is a powerful method for preparing small DNA fragments of DNA molecular weight standards.  相似文献   

4.
5.
Syntheses of a unique set of energy transfer dye labeled nucleoside triphosphates, compounds 1-3, are described. Attempts to prepare these compounds were only successful if the triphosphorylation reaction was performed before coupling the dye to the nucleobase, and not the other way around. Compounds were prepared as both the 2'-deoxy (a) and 2',3'-dideoxy- (b) forms. They feature progressively longer rigid conjugated linkers connecting the nucleobase and the hydroxyxanthone moiety. UV spectra of the parent nucleosides 12-14 show that as the length of the linker increases so does the absorption of the donor in the 320-330 nm region, but with relatively little red-shift of the maxima. Fluorescence spectra of the same compounds show that radiation in the 320-330 nm region results in predominant emission from the fluorescein. When the linker is irradiated at 320 nm, the only significant emission observed corresponds to the hydroxyxanthone part of the molecules at 520 nm; this corresponds to an effective Stokes' shift of 200 nm. As the absorption at 320-330 nm by the linker increases with length, so does the intensity of the fluorescein emission. A gel assay was used to gauge relative incorporation efficiencies of compounds 1-3, dTTP, ddTTP, and 6-TAMRA-ddTTP. Throughout, the thermostable polymerase TaqFS was used, as it is the one most widely applied in high throughput DNA sequencing. This assay showed that only compounds 3 were incorporated efficiently; these have the longest linkers. Of these, the 2'-deoxy nucleoside 3 a was incorporated and did not prevent the polymerase from extending the chain further. The 2',3'-dideoxy nucleoside 3 b was incorporated only about 430 times less efficiently than ddTTP under the same conditions, and caused chain termination. The implications of these studies on modified sequencing protocols are discussed.  相似文献   

6.
Azobenzene linker molecules can be utilized to control peptide/protein function when they are ligated to appropriately spaced amino acid side chains of the peptide. This is because the photochemical E/Z isomerization of the azobenzene N?N double bond allows to switch peptide conformation between folded and unfolded. In this context, we have introduced carbohydrate‐functionalized azobenzene derivatives in order to advance the biocompatible properties of azobenzene peptide linkers. Chloroacetamide‐functionalized and O‐allylated carbohydrate derivatives were synthesized and conjugated with azobenzene to achieve new bifunctional cross‐linkers, in order to allow ligation to cysteine side chains by nucleophilic substitution or thiol‐ene reaction, respectively. The photochromic properties of the new linker glycoconjugates were determined and first ligation reactions performed.  相似文献   

7.
We report here a simple and efficient method for site-directed mutagenesis using polymerase chain reaction (PCR). In constructing a new expression plasmid for the EcoRI restriction gene, we made two point mutations. While one created a new SalI site prior to the SD sequence, the other replaced Glu144 with Lys. A 1.5 kb SalI-PstI fragment isolated from pER101 was used as the template. Two 25 mer oligonucleotide primers containing the desired mutations were synthesized and used to direct PCR amplification with Taq DNA polymerase. About 0.5 microgram of the 0.49 kb fragment was obtained from 0.05 microgram of the 1.5 kb fragment by carrying out polymerase chain reaction for 30 cycles. As calculated theoretically, 99% of the product contained the desired mutations. The product was cloned into pUC19 using SalI and PstI, two of the transformed colonies were randomly chosen for sequence analysis, and both of them were shown to contain the desired mutations. Finally, the amplified fragment was cloned into pER304 to place the EcoRI (Lys144) gene directly under the control of the lambda PL promoter.  相似文献   

8.
Microcontact chemistry has been applied to patterned glass and silicon substrates by successive reaction of unprotected and monoprotected heterobifunctional linkers with alkene-terminated self-assembled monolayers (SAMs) to produce bi-, tri-, and tetrafunctional surfaces. Photochemical microcontact printing of an azide thiol linker followed by immobilization of an acid thiol linker on an undecenyl-terminated SAM results in a well-defined, micropatterned surface with terminal azide, acid, and alkene groups. Biologically relevant molecules (biotin, carbohydrates) have been selectively attached to the surface by means of orthogonal ligation chemistry, and the resulting microarrays display selective binding to fluorescently labeled proteins. An orthogonally addressable, tetrafunctional surface (azide, acid, alkene, and amine) can be prepared by an additional printing step of a tert-butyloxycarbonyl (Boc)-protected alkyne amine linker on the azide structures by using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and subsequent removal of the protective group.  相似文献   

9.
Current screening and event-specific polymerase chain reaction (PCR) assays for the detection and identification of genetically modified organisms (GMOs) in samples of unknown composition or for the detection of non-regulated GMOs have limitations, and alternative approaches are required. A transgenic DNA fingerprinting methodology using restriction enzyme digestion, adaptor ligation, and nested PCR was developed where individual GMOs are distinguished by the characteristic fingerprint pattern of the fragments generated. The inter-laboratory reproducibility of the amplified fragment sizes using different capillary electrophoresis platforms was compared, and reproducible patterns were obtained with an average difference in fragment size of 2.4 bp. DNA insert fingerprints for 12 different maize events, including two maize hybrids and one soy event, were generated that reflected the composition of the transgenic DNA constructs. Once produced, the fingerprint profiles were added to a database which can be readily exchanged and shared between laboratories. This approach should facilitate the process of GMO identification and characterization.  相似文献   

10.
Allele-specific polymerase chain reaction is based on polymerase extension from primers that contain a 3' end base that is complementary to a specific mutation and inhibition of extension with wild-type DNA due to a 3' end mismatch. Taq polymerase is commonly used for this assay, but because of the high rate of nucleotide extension from primer 3' base mismatches documented for Taq polymerase, high sensitivity is difficult to achieve. To determine whether other polymerases might improve assay sensitivity, 15 polymerases were tested with mutation-specific primers for two ultraviolet-induced mutations in the human 5S ribosomal RNA genes. Of the 15 polymerases tested, six were capable of discriminating these mutations at levels equivalent to or better than Taq polymerase. All primers were phosphorothioate modified on the 3' end to block removal of the critical 3' mutation-specific base by polymerases containing 3' --> 5' exonuclease "proofreading" activity. The effectiveness of phosphorothioate modification was measured in mock polymerase chain reaction reactions and a time course. All six enzymes containing this exonuclease activity showed some ability to digest phosphorothioate-modified primers and could be divided into two groups, showing fast and slow digestion kinetics. Of the three enzymes that showed slow digestion kinetics, two also showed significantly slower digestion kinetics of unmodified primers.  相似文献   

11.
A novel DNA methylation assay technique, termed bisulfite single-strand conformation polymorphism (bisulfite-SSCP), is a combination of sodium-bisulfite modification and fluorescence-based polymerase chain reaction (PCR)-SSCP. After bisulfite treatment followed by PCR amplification, methylated and unmethylated alleles can be simultaneously separated in a nondenaturing gel using an automated DNA sequencer. Using bisulfite-SSCP, methylation of hMLH1 was detected in a quantitative manner. This method is not only simple, quick, accurate, and quantitative, but detailed information about methylation is also available with less work. Methylation analysis of large numbers of samples for multiple loci will be facilitated by bisulfite-SSCP.  相似文献   

12.
The synthesis and properties of nicked dumbbell and dumbbell DNA conjugates having A-tract base pair domains connected by rod-like stilbenedicarboxamide linkers are reported. The nicked dumbbells have one to eight dA-dT base pairs and are missing a sugar-phosphate bond either between the linker and a thymine nucleoside residue or between two thymine residues. Chemical ligation of all of the nicked dumbbells with cyanogen bromide affords the dumbbell conjugates in good yield, providing the smallest mini-dumbbells prepared to date. The dumbbells have exceptionally high thermal stability, whereas the nicked dumbbells are only marginally more stable than the hairpin structures on either side of the nick. The structures of the nicked dumbbells and dumbbells have been investigated using a combination of circular dichroism spectroscopy and molecular modeling. The base pair domains are found to adopt normal B'-DNA geometry and thus provide a helical ruler for studies of the distance and angular dependence of electronic interactions between the chromophore linkers.  相似文献   

13.
The thermal stability and conformational dynamics of DNA hairpin and dumbbell conjugates having short A-tract base pair domains connected by tri- or hexa(ethylene glycol) linkers is reported. The formation of stable base-paired A-tract hairpins having oligo(ethylene glycol) linkers requires a minimum of four or five A-T base pairs. The formation of base-paired dumbbells having oligo(ethylene glycol) linkers by means of chemical ligation of nicked dumbbells requires a minimum of two A-T base pairs on either side of the nick. Molecular modeling indicates that the hexa(ethylene glycol) linker is sufficiently long to permit formation of strain-free loop regions and B-DNA base pair domains. In contrast, the tri(ethylene glycol) is too short to permit Watson-Crick base pairing between the bases attached to the linker. The shorter linker distorts the duplex, resulting in fluxional behavior in which the base pairs adjacent to the linker and at the open end of the hairpin dissociate on the nanosecond time scale. The loss of interstrand binding energy caused by these fluctuations leads to a difference of approximately 5 degrees C in melting temperature between EG3 and EG6 hairpins. An analysis of the fluxional behavior of the EG3 adjacent base-pair has been used to study the pathways for base flipping and base stacking, including the identification of rotated base (partially flipped) intermediates that have not been described previously for A-T base pairs.  相似文献   

14.
[reaction: see text] The synthesis of 2'-deoxycytidine nucleosides bearing amino and thiol groups appended to the 5-position of the nucleobase via a butynyl linker is described. The corresponding triphosphates were then synthesized from the nucleoside and incorporated into oligonucleotides by Vent (exo(-)) DNA polymerase. The ability of Vent (exo(-)) polymerase to amplify oligonucleotides containing these functionalized cytidine derivatives in a polymerase chain reaction (PCR) was demonstrated for the amino-functionalized derivative.  相似文献   

15.
Magnetite and silica-magnetite composites were used as adsorbents for the isolation of genomic DNA from maize kernels. Two methods are described for the preparation of silica-magnetite composites, both of which afford higher yields of genomic DNA than when using magnetite alone, or a commerically available kit. DNA isolated using silica-magnetite was suitable for use in further applications such as polymerase chain reaction amplification and enzyme digestion.  相似文献   

16.
E Gottwald  O Müller  A Polten 《Electrophoresis》2001,22(18):4016-4022
We have applied a method to monitor mRNA expression in a semiquantitative fashion on the Agilent 2100 Bioanalyzer. The method was originally described in 1994 by Wong et al. and referred to as the "primer-dropping" method. This polymerase chain reaction (PCR) technique uses multiple sets of primer pairs in a coamplification reaction that amplifies the target of interest within a predetermined range specific for each target. Separation, detection and quantification of PCR products were accomplished using the Agilent 2100 Bioanalyzer in conjunction with the DNA 500 and the DNA 1000 Lab-Chip kits for the detection of DNA fragments with a maximum size of 500 and 1000 bp, respectively. Using primers specific for the inducible form of hsp72 and primers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal standard we were able to rapidly monitor and quantify inducible hsp72-mRNA expression.  相似文献   

17.
We developed a general and efficient method for directing the deletions of DNA sequences of any lengths using polymerase chain reaction (PCR). The method was based on in vitro amplification of target sequences with site-specific deletions, Klenow end-flushing and blunt-end cloning. As an example, it was used to delete the restriction gene encoding EcoRI endonuclease, resulting in plasmids expressing two truncated forms. Assays using SDS-PAGE and gel retardation revealed the important role of the amphipathic helix (29-43) of the EcoRI endonuclease in binding to its cognate substrate.  相似文献   

18.
Recent studies have established the utility of oligonucleotide ligation methods in the detection of DNAs and RNAs in solution and in cellular imaging. Notably, the ligated full-length oligonucleotide products commonly bind to the target nucleic acid much more tightly than do the two starting half-probes, which effectively limits the resulting signals to one per target. Here, we report on a molecular strategy for destabilizing ligated products in template-promoted self-ligation reactions, thus yielding multiple signals per target. A new universal linker design is described in which a dabsyl leaving group is placed on a short alkane tether. This allows the placement of an electrophile at the end of any DNA sequence, in contrast to earlier ligation strategies, and it also speeds reaction rates by a factor of 4-5. This new class of molecular linker/activator yields as much as 92-fold amplification of signals in DNA and RNA detection, and proceeds without enzymes, added reagents, or thermal cycling. The linker is shown to destabilize the ligation product without destabilizing the transition state for ligation. This lowers product inhibition, and the target DNA or RNA thus becomes a catalyst for isothermally generating multiple signals for its detection. This enhanced signal generation is demonstrated in solution experiments and in solid supported assays.  相似文献   

19.
Suitably protected carbohydrates were joined together using 1,5-disubstituted 1,2,3-triazolylmethylene (1,5-DTM) linkers. The DTM linker was built by the 1,3-dipolar cycloaddition reactions of a series of sugar azides with vinyl sulfonylmethylene-modified furanose or pyranose under metal free conditions. Three different biodegradable hydroxylammonium based ionic liquids were studied in water as the reaction media. The N,N-dimethyl ethanolammonium formate-water mixture was found to be the best reaction medium because the reaction time was shortened considerably to generate a dozen new 1,5-DTM-linked disaccharides.  相似文献   

20.
Two dual linker systems with specific reference cleavage sites were designed and synthesized to accelerate and simplify development and optimization of reaction conditions for solid-phase synthesis. The dual linker allows simple evaluation of cleavage rate of polymer-supported compounds from the linker and, at the same time, ensures that all resin-bound components are cleaved from the solid support. The dual linker 4 was assembled from two Wang linkers connected by a three carbon spacer. The linker 9 was synthesized using the PAL and HMPB linkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号