首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the Falkner-Skan equation, including the Blasius equation as a special case, we develop a new numerical technique, transforming the governing equation into a non-linear second-order boundary value problem by a new transformation technique, and then solve it by the Lie-group shooting method. The second-order ordinary differential equation is singular, which is, however, much saving computational cost than the original third-order equation defined in a semi-infinite range. In order to overcome the singularity we consider a perturbed equation. The newly developed Lie-group shooting method allows us to search a missing initial slope at the left-end in a compact space of t∈[0,1], and moreover, the initial slope can be expressed as a closed-form function of r∈(0,1), where the best r is determined by matching the right-end boundary condition. All that makes the new method much superior than the conventional shooting method used in the boundary layer equation under imposed boundary conditions. When the initial slope is available we can apply the fourth-order Runge-Kutta method to calculate the solution, which is highly accurate. The present method is very effective for searching the multiple-solutions under very complex boundary conditions of suction or injection, and also allowing the motion of plate.  相似文献   

2.
In book II of Newton's Principia Mathematica of 1687 several applicative problems are introduced and solved. There, we can find the formulation of the first calculus of variations problem that leads to the first free boundary problem of history. The general calculus of variations problem is concerned with the optimal shape design for the motion of projectiles subject to air resistance. Here, for Newton's optimal nose cone free boundary problem, we define a non-iterative initial value method which is referred in the literature as a transformation method. To define this method we apply invariance properties of Newton's free boundary problem under a scaling group of point transformations. Finally, we compare our non-iterative numerical results with those available in the literature and obtained via an iterative shooting method. We emphasize that our non-iterative method is faster than shooting or collocation methods and does not need any preliminary computation to test the target function as the iterative method or even provide any initial iterate. Moreover, applying Buckingham Pi-Theorem we get the functional relation between the unknown free boundary and the nose cone radius and height.  相似文献   

3.
In the present study we propose a new version of the lattice-Boltzmann (LB) method for the simulation of flow of yield-stress liquids. Unlike traditional LB methods, collisions are treated implicitly, i.e., the collision term is chosen in such a way that the stress and strain rate tensors satisfy the constitutive equation after the collision. This approach requires the solution of a (one-dimensional) non-linear algebraic equation at each point and at each time step. In the practically important cases of a Bingham liquid this equation can be solved analytically. We calculated the flow of Bingham fluid through a channel and periodic mesh of cylinders.  相似文献   

4.
The flow of a micropolar fluid through a wavy constricted channel which depends on a small parameter ε?1 is considered. The asymptotic solution is built and justified thanks to a study of the boundary layers terms. The Stokes and Navier–Stokes problems set in a tube structure were previously considered. The method of partial asymptotic decomposition of domain (MAPPD) is also applied and justified for the micropolar flow problem. This method reduces the initial problem to the problem set in the boundary layers domain. To cite this article: D. Dupuy et al., C. R. Mecanique 332 (2004).  相似文献   

5.
In this paper, we consider the initial value problem of a class of Hill’s equation having a small parameter. Using the solvable condition of boundary value problem and the stretched parameter method in the perturbation techniques, we present the method which can be applied to obtain asymptotic periodic solution of the initial value problem. As an example, we consider Mathieu equation and present its computational result.  相似文献   

6.
We propose a new formulation for weakly imposing Dirichlet boundary conditions in non-Newtonian fluid flow. It is based on the Gerstenberger–Wall formulation for Newtonian fluids [1], but extended to non-Newtonian fluids. It uses a stabilization term in the weak form that is independent from the actual fluid model used, except for an adjustable parameter κ, having the physical dimension of a viscosity. The new formulation is tested, combined with an extended finite element method, for the flow past a cylinder between two walls using both a generalized Newtonian and a viscoelastic fluid. It is shown that the convergence is optimal for the generalized Newtonian fluid by comparing with a converged boundary-fitted solution using traditional strong boundary conditions. Also the solution of the viscoelastic fluid compares very well with a traditional solution using a boundary-fitted mesh and strong Dirichlet boundary conditions. For both fluid models we also test various values of the κ parameter and it turns out that a value equal to the zero-shear-viscosity gives good results. But, it is also shown that a wide range of κ values can be chosen without sacrificing accuracy.  相似文献   

7.
In this paper, we have proposed a time marching intregral equation method which does not have the limitation of the time linearized integral equation method in that the latter method can not satisfactorily simulate the shock-wave motions. Firstly, a model problem—one dimensional initial and boundary value wave problem is treated to clarify the basic idea of the new method. Then the method is implemented for 2-D and 3-D unsteady transonic flow problems. The introduction of the concept of a quasi-velocity-potential simplifies the time marching integral equations and the treatment of trailing vortex sheet condition. The numerical calculations show that the method is reasonable and reliable.  相似文献   

8.
In this paper, we discuss the singular perturbation problem of the parabolic partial differential equation. As usual, we must reduce the mesh size in the neighbourhood of the boundary layer so that typical feature of the boundary layer will not be lost. Then we need very large operational quantity when mesh sizes are getting too small. Now we propose the boundary layer scheme, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical examples show that the accuracy can be satisfied with moderate step size.  相似文献   

9.
In this article we derive semi-analytical/numerical solutions for transport phenomena (momentum, heat and mass transfer) in a nanofluid regime adjacent to a nonlinearly porous stretching sheet by means of the Homotopy analysis method (HAM). The governing equations are reduced to a nonlinear, coupled, non-similar, ordinary differential equation system via appropriate similarity transformations. This system is solved under physically realistic boundary conditions to compute stream function, velocity, temperature and concentration function distributions. The results of the present study are compared with numerical quadrature solutions employing a shooting technique with excellent correlation. Furthermore the current HAM solutions demonstrate very good correlation with the non-transpiring finite element solutions of Rana and Bhargava (Commun. Nonlinear Sci. Numer. Simul. 17:212–226, 2012). The influence of stretching parameter, transpiration (wall suction/injection) Prandtl number, Brownian motion parameter, thermophoresis parameter and Lewis number on velocity, temperature and concentration functions is illustrated graphically. Transpiration is shown to exert a substantial influence on flow characteristics. Applications of the study include industrial nanotechnological fabrication processes.  相似文献   

10.
求解非线性动力系统周期解的改进打靶法   总被引:2,自引:1,他引:1  
针对有周期解的动力系统边值问题可以转化为初值问题这一特点,改进了周期解的打靶 法数值求解. 在计算边界条件代数方程关于待定初值参数导数的过程中利用前一次 Runge-Kutta方法计算得到的节点函数值并通过再次利用Runge-Kutta方法获得了该导数值. 用此方法求解了Duffing方程及非线性转子---轴承系统的周期解,用Floquet理论判断了 周期解的稳定性,与普通打靶法作了比较,验证了方法的有效性.  相似文献   

11.
The purpose of this work is to study the deformation of elastic cantilevers due to hydrodynamic forces by coupled fluid–structure interaction simulations. The cantilever is placed in a rectangular duct and the Reynolds number based on bulk velocity and cantilever diameter is 400. Reduced velocities in the range π/4 to 2π are studied, which covers both un-synchronised motion and the initial branch of synchronisation. The cantilever surface is represented by a virtual boundary method which replaces a solid object in flow by additional force distribution to satisfy local boundary condition. The flow field is solved using a Cartesian finite difference code and the deformation of the cylinder a finite element approach using one-dimensional beam elements is used.  相似文献   

12.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper the free convection flow through a thin rigid hot sheet moving horizontally out of a slot is considered. It is found that there is a similarity formulation of the boundary-layer equations so that the problem reduces to solving a system of coupled ordinary differential equations with suitable boundary conditions. This system of equations is solved numerically for various values of the Prandtl number,Pr, namely 0.45≤Pr≤10000. It is found that for the flow under the sheet there is a reverse flow region near the sheet for small values ofPr, whilst in the case of the flow above the sheet there is no reverse flow region for any value ofPr we have investigated. For the flow under the sheet an asymptotic behaviour, which is valid near the minimum value of the Prandtl number for which it is possible to obtain a numerical solution, is proposed.  相似文献   

14.
A Legendre wavelet spectral collocation method is proposed here to solve three boundary layer flow problems of Walter-B fluid namely the stagnation point flow, Blasius flow and Sakiadis flow. In the proposed method, we first transform the boundary value problems into initial value problems using shooting method. We then split the semi infinite domain into subintervals and the governing initial value problems are transformed to system of algebraic equations in each subinterval. The solutions of these algebraic equations yield an approximate solution of the differential equation in each subinterval. The overshoot in the velocity profile associated with the stagnation point and Blasius flows and undershoot in the Sakiadis flow is controlled. Physically realistic solutions are presented for both weakly and strongly viscoelastic parameters. The residual error validates the correctness, convergence and accuracy of the obtained solutions.  相似文献   

15.
We study the asymptotic behavior of compressible isentropic flow through a porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping. As t ?? ??, the density is conjectured to obey the well-known porous medium equation and the momentum is expected to be formulated by Darcy??s law. In this paper, we prove that any L ?? weak entropy solution to the Cauchy problem of damped Euler equations with finite initial mass converges strongly in the natural L 1 topology with decay rates to the Barenblatt profile of the porous medium equation. The density function tends to the Barenblatt solution of the porous medium equation while the momentum is described by Darcy??s law. The results are achieved through a comprehensive entropy analysis, capturing the dissipative character of the problem.  相似文献   

16.
Pramod Kumar Yadav 《Meccanica》2013,48(7):1607-1622
This paper concerns the Slow Motion of a Porous Cylindrical Shell in a concentric cylindrical cavity using particle-in-cell method. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid in their stream function formulations are used. The hydrodynamic drag force acting on each porous cylindrical particle in a cell and permeability of membrane built up by cylindrical particles with a porous shell are evaluated. Four known boundary conditions on the hypothetical surface are considered and compared: Happel’s, Kuwabara’s, Kvashnin’s and Cunningham’s (Mehta-Morse’s condition). Some previous results for hydrodynamic drag force and dimensionless hydrodynamic permeability have been verified. Variation of the drag coefficient and dimensionless hydrodynamic permeability with permeability parameter σ, particle volume fraction γ has been studied and some new results are reported. The flow patterns through the regions have been analyzed by stream lines. Effect of particle volume fraction γ and permeability parameter σ on flow pattern is also discussed. In our opinion, these results will have significant contributions in studying, Stokes flow through cylindrical swarms.  相似文献   

17.
Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well.  相似文献   

18.
The boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium are considered. We apply Lie-group method for determining symmetry reductions of partial differential equations. Lie-group method starts out with a general infinitesimal group of transformations under which the given partial differential equations are invariant. The determining equations are a set of linear differential equations, the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group has been determined, a solution to the given partial differential equations may be found from the invariant surface condition such that its solution leads to similarity variables that reduce the number of independent variables of the system. The effect of the velocity parameter λ, which is the ratio of the external free stream velocity to the stretching surface velocity, permeability parameter of the porous medium k 1, and Prandtl number Pr on the horizontal and transverse velocities, temperature profiles, surface heat flux and the wall shear stress, has been studied.  相似文献   

19.
The linearized pressure Poisson equation (LPPE) is used in two and three spatial dimensions in the respective matrix-forming solution of the BiGlobal and TriGlobal eigenvalue problem in primitive variables on collocated grids. It provides a disturbance pressure boundary condition which is compatible with the recovery of perturbation velocity components that satisfy exactly the linearized continuity equation. The LPPE is employed to analyze instability in wall-bounded flows and in the prototype open Blasius boundary layer flow. In the closed flows, excellent agreement is shown between results of the LPPE and those of global linear instability analyses based on the time-stepping nektar++, Semtex and nek5000 codes, as well as with those obtained from the FreeFEM++ matrix-forming code. In the flat plate boundary layer, solutions extracted from the two-dimensional LPPE eigenvector at constant streamwise locations are found to be in very good agreement with profiles delivered by the NOLOT/PSE space marching code. Benchmark eigenvalue data are provided in all flows analyzed. The performance of the LPPE is seen to be superior to that of the commonly used pressure compatibility (PC) boundary condition: at any given resolution, the discrete part of the LPPE eigenspectrum contains converged and not converged, but physically correct, eigenvalues. By contrast, the PC boundary closure delivers some of the LPPE eigenvalues and, in addition, physically wrong eigenmodes. It is concluded that the LPPE should be used in place of the PC pressure boundary closure, when BiGlobal or TriGlobal eigenvalue problems are solved in primitive variables by the matrix-forming approach on collocated grids.  相似文献   

20.
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号