首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of controlling the vibration of a transversely excited cantilever beam with tip mass is analyzed within the framework of the Euler–Bernoulli beam theory. A sinusoidally varying transverse excitation is applied at the left end of the cantilever beam, while a payload is attached to the free end of the beam. An active control of the transverse vibration based on cubic velocity is studied. Here, cubic velocity feedback law is proposed as a devise to suppress the vibration of the system subjected to primary and subharmonic resonance conditions. Method of multiple scales as one of the perturbation technique is used to reduce the second-order temporal equation into a set of two first-order differential equations that govern the time variation of the amplitude and phase of the response. Then the stability and bifurcation of the system is investigated. Frequency–response curves are obtained numerically for primary and subharmonic resonance conditions for different values of controller gain. The numerical results portrayed that a significant amount of vibration reduction can be obtained actively by using a suitable value of controller gain. The response obtained using method of multiple scales is compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. Numerical simulation for amplitude is also obtained by integrating the equation of motion in the frequency range between 1 and 3. The developed results can be extensively used to suppress the vibration of a transversely excited cantilever beam with tip mass or similar systems actively.  相似文献   

2.
Nonstationary excitations of slender, elastic, cantilevered beams with equal principal moments of inertia are considered. The excitation frequency is slowly increased or decreased through a resonance of the first mode at a constant rate. Three resonances are investigated: primary resonance, superharmonic resonance of order two and subharmonic resonance of order two. After application of Galerkin's method with three modes, the nonlinear, nonstationary response of the first mode of the beam is determined by two methods: integration of the modulation equations obtained from the method of multiple scales, and direct numerical integration of the temporal equations of motion. Time histories are presented and the effects of excitation amplitude, rate of acceleration or deceleration through resonance, damping and initial conditions of the disturbance on the maximum response are studied. The effect of a persistent random disturbance is also examined. Although the excitation acts in the vertical plane, whirling occurs if the beam is subjected to out-of-plane disturbances.  相似文献   

3.
This paper studies the non-linear dynamics of a soft magneto-elastic Cartesian manipulator with large transverse deflection. The system has been subjected to a time varying magnetic field and a harmonic base excitation at the roller-supported end. Unlike elastic and viscoelastic manipulators, here the governing temporal equation of motion contains additional two frequency forced, and linear and non-linear parametric excitation terms. Method of multiple scales has been used to solve the temporal equation of motion. The influences of various system parameters such as amplitude and frequency of magnetic field strength, amplitude and frequency of support motion, and the payload on the frequency response curves have been investigated for three different resonance conditions. With the help of numerical results, it has been shown that by using suitable amplitude and frequency of magnetic field, the vibration of the manipulator can be significantly controlled. The developed results and expressions can find extensive applications in the feed-forward vibration control of the flexible Cartesian manipulator using magnetic field.  相似文献   

4.
This study analyses the nonlinear transverse vibration of an axially moving beam subject to two frequency excitation. Focus has been made on simultaneous resonant cases i.e. principal parametric resonance of first mode and combination parametric resonance of additive type involving first two modes in presence of internal resonance. By adopting the direct method of multiple scales, the governing nonlinear integro-partial differential equation for transverse motion is reduced to a set of nonlinear first order ordinary partial differential equations which are solved either by means of continuation algorithm or via direct time integration. Specifically, the frequency response plots and amplitude curves, their stability and bifurcation are obtained using continuation algorithm. Numerical results reveal the rich and interesting nonlinear phenomena that have not been presented in the existent literature on the nonlinear dynamics of axially moving systems.  相似文献   

5.
In this study, the nonlinear vibrations of an axially moving beam are investigated by considering the coupling of the longitudinal and transversal motion. The Galerkin method is used to truncate the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. By detuning the axially velocity, the exact parameters with which the system may turn to internal resonance are detected. The method of multiple scales is applied to the governing equations to study the nonlinear dynamics of the steady-state response caused by the internal–external resonance. The saturation and jump phenomena of such system have been reported by investigating the nonlinear amplitude–response curves with respect to external excitation, internal, and external detuning parameters. The longitudinal external excitation may trigger only longitudinal response when excitation amplitude is weak. However, beyond the critical excitation amplitude, the response energy will be transferred from the longitudinal motion to the transversal motion even the excitation is employed on the longitudinal direction. Such energy transfer due to saturation has the potential to be used in the vibration suppression.  相似文献   

6.
Using the method of multiple scales, an extensive frequency response and subharmonic resonance analysis of the equations of motion governing the nonlinear flexural vibrations of piezoelectrically actuated microcantilevers is performed. Such comprehensive understanding of the nonlinear response and subharmonics analysis of these microcantilevers is, indeed, justified by the applications of piezoelectrically actuated microcantilevers that are increasingly becoming popular in many science and engineering areas including scanning force microscopy, biosensors, and microactuators. Along this line, the method of multiple scales is used to derive the 2× and 3× subharmonic resonances appearing in nonlinear flexural vibrations of a piezoelectrically actuated microcantilever. An experimental examination is performed in order to verify the analytical results. The analytical and experimental results yield the same system response for the fundamental frequency. In addition, the experimental results demonstrate the presence of subharmonic resonances that are supported by numerical simulations of the equations of motion. The experimental mode shapes of these subharmonic frequencies are also measured and compared with fundamental frequency.  相似文献   

7.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

8.
Bolted joint structures are prone to bolt loosening under environmental and operational vibrations, which may severely affect the structural integrity. This paper presents a bolt looseness recognition method based on the subharmonic resonance analysis. The bolted joint structure was simplified to a two-degree-of-freedom nonlinear model, and a multiple timescale method was used to explain the phenomenon of the subharmonic resonance and conditions for the generation of subharmonics. Numerical simulation predictions for the generation of the subharmonics and conditions for the subharmonics can be found with respect to the excitation frequency and the excitation amplitude. Experiments were performed on a bolt-joint aluminum beam, where the damage was simulated by loosening the bolts. Two surface-bonded piezoelectric transducers were utilized to generate continuous sinusoidal excitation and to receive corresponding sensing signals. The experimental results demonstrated that subharmonic components would appear in the response spectrum when the bolted structure was subjected to the excitation of twice its natural frequency. This subharmonic resonance method was found to be effective on bolt looseness detection.  相似文献   

9.
In this paper, research on nonlinear dynamic behavior of a string-beam coupled system subjected to parametric and external excitations is presented. The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system. The Galerkin's method is employed to simplify the governing equations to a set of ordinary differential equations with two degrees-of-freedom. The case of 1:2 internal resonance between the modes of the beam and string, principal parametric resonance for the beam, and primary resonance for the string is considered. The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system. Based on the averaged equation obtained here, the techniques of phase portrait, waveform, and Poincare map are applied to analyze the periodic and chaotic motions. It is found from numerical simulations that there are obvious jumping phenomena in the resonant response–frequency curves. It is indicated from the phase portrait and Poincare map that period-4, period-2, and periodic solutions and chaotic motions occur in the transverse nonlinear vibrations of the string-beam coupled system under certain conditions. An erratum to this article is available at .  相似文献   

10.
In this present work, the non-linear behavior of a single-link flexible visco-elastic Cartesian manipulator is studied. The temporal equation of motion with complex coefficients of the system is obtained by using D’Alembert's principle and generalized Galarkin method. The temporal equation of motion contains non-linear geometric and inertia terms with forced and non-linear parametric excitations. It may also be found that linear and non-linear damping terms originated from the geometry of the large deformation of the system exist in this equation of motion. Method of multiple scales is used to determine the approximate solution of the complex temporal equation of motion and to study the stability and bifurcation of the system. The response obtained using method of multiple scales are compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. The response curves obtained using viscoelastic beams are compared with those obtained from a linear Kelvin-Voigt model and also with an equivalent elastic beam. The effect of the material loss factor, amplitude of base excitation, and mass ratio on the steady state responses for both simple and subharmonic resonance conditions are investigated.  相似文献   

11.
In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.  相似文献   

12.
The nonlinear equations of motion of planar bending vibration of an inextensible viscoelastic carbon nanotube (CNT)-reinforced cantilevered beam are derived. The viscoelastic model in this analysis is taken to be the Kelvin–Voigt model. The Hamilton principle is employed to derive the nonlinear equations of motion of the cantilever beam vibrations. The nonlinear part of the equations of motion consists of cubic nonlinearity in inertia, damping, and stiffness terms. In order to study the response of the system, the method of multiple scales is applied to the nonlinear equations of motion. The solution of the equations of motion is derived for the case of primary resonance, considering that the beam is vibrating due to a direct excitation. Using the properties of a CNT-reinforced composite beam prototype, the results for the vibrations of the system are theoretically and experimentally obtained and compared.  相似文献   

13.
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated. The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton's principle. A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method. A high-dimensional model of the buckled beam is derived, concerning nonlinear coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve, and the Floquet theory is used to analyze the stability of the periodic solutions. Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited. Bifurcations including the saddle-node, Hopf, perioddoubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic motion is observed by using the fourth-order Runge-Kutta method, which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.  相似文献   

14.
Based on the Maxwell equations, the nonlinear magneto-elastic vibration equations of a thin plate and the electrodynamic equations and expressions of electro- magnetic forces are derived. In addition, the magneto-elastic combination resonances and stabilities of the thin beam-plate subjected to mechanical loadings in a constant transverse magnetic filed are studied. Using the Galerkin method, the corresponding nonlinear vibration differential equations are derived. The amplitude frequency response equation of the system in steady motion is obtained with the multiple scales method. The excitation condition of combination resonances is analyzed. Based on the Lyapunov stability theory, stabilities of steady solutions are analyzed, and critical conditions of stability are also obtained. By numerical calculation, curves of resonance-amplitudes changes with detuning parameters, excitation amplitudes and magnetic intensity in the first and the second order modality are obtained. Time history response plots, phase charts, the Poincare mapping charts and spectrum plots of vibrations are obtained. The effect of electro-magnetic and mechanical parameters for the stabilities of solutions and the bifurcation are further analyzed. Some complex dynamic performances such as period- doubling motion and quasi-period motion are discussed.  相似文献   

15.
The non-linear integro-differential equations of motion for a slender cantilever beam subject to axial narrow-band random excitation are investigated. The method of multiple scales is used to determine a uniform first-order expansion of the solution of equations. According to solvability conditions, the non-linear modulation equations for the principal parametric resonance are obtained. Firstly, The largest Lyapunov exponent which determines the almost sure stability of the trivial solution is quantificationally resolved, in which, the modified Bessel function of the first kind is introduced. Results show that the increase of the bandwidth facilitates the almost sure stability of the trivial response and stabilizes the system for a lower acceleration oscillating amplitude but intensifies the instability of the trivial response for a higher one. Secondly, the first and second order non-trivial steady state response of the system is obtained by perturbation method and the corresponding amplitude–frequency curves are calculated when the bandwidth is very small. Results show that the effective non-linearity of whether the amplitude expectation of the first order steady state response or the amplitude expectation of the second order steady state response is of the hardening type for the first mode, whereas for the second mode the effective non-linearity of whether the amplitude expectation of the first order steady state response or the amplitude expectation of the second order steady state response is of the softening type. Finally, the stochastic jump and bifurcation is investigated for the first and second modal parametric principal resonance. The basic jump phenomena indicate that, under the conditions of system parameters with a smaller bandwidth, the most probable motion is around the non-trivial branch of the amplitude response curve, whereas with a higher bandwidth, the most probable motion is around the trivial one of the amplitude response curve. However, the stochastic jump is sometimes more sensitive to the change of the bandwidth, in other words, a small change of bandwidth may induce a series of stochastic jump and bifurcation.  相似文献   

16.
The potential of harvesting vibratory energy via a bistable beam subjected to subharmonic parametric excitations is investigated. The vibrating structure is a buckled beam with two stable equilibria separated by a potential barrier. The beam is subjected to a superposition of a static axial load beyond its buckling load and a harmonic axial excitation whose frequency is around twice the frequency of the buckled beam’s first vibration mode. A macro-fiber composite patch is attached to one side of the beam to convert the strain energy resulting from the beam’s oscillation into electricity. The study considers two regimes of excitations: an amplitude sweep and a frequency sweep. In the first regime, the amplitude of excitation is quasi-statically varied while the excitation frequency is tuned at twice the natural frequency of the first vibration mode. In the second regime, the excitation frequency is swept forward and backward around the subharmonic resonant frequency while the amplitude of excitation is kept constant. A theoretical model which governs the electromechanical coupling of the transverse vibrations of the beam and the output voltage is used to monitor the response as the excitation parameters are changed. An experimental setup is also built and a series of tests is performed to validate the theoretical findings. It is shown that, depending on the amplitude and frequency of excitation, the harvester can perform small-amplitude periodic intra-well motion, intra- and inter-well chaotic motions, as well as periodic inter-well motions. Experimental results also show that, as compared to the classical linear resonance, utilizing the sub-harmonic resonance of a bistable energy harvesters can result in a broadband frequency response.  相似文献   

17.
An account of certain subharmonic vibrations as observed during a resonant testing of thin-walled beams of monosymmetric open section for coupled torsional and bending vibrations is presented. The phenomenon can be described in terms of the vibrational modes of the beam. When the beam is excited at the resonant frequency of a higher mode, there is a tendency for the lowest mode to be excited, resulting in a high-order subharmonic oscillation. It is found that when such phenomenon occurs, the high-mode frequency is a multiple or near multiple of the fundamental frequency of the beam. Under such condition, the response of the beam consists of a superposition of the response of the high mode (harmonic response) and that of the fundamental mode (subharmonic response). The amplitude of the subharmonic motion is generally much larger than that of the harmonic response.  相似文献   

18.
The present work deals with the non-linear vibration of a harmonically excited single link roller-supported flexible Cartesian manipulator with a payload. The governing equation of motion of this system is developed using extended Hamilton's principle, which is reduced to the second-order temporal differential equation of motion, by using generalized Galerkin's method. This equation of motion contains both cubic non-linearities of geometric and inertial type in addition to linear forced and non-linear parametric excitation terms. Method of multiple scales is used to solve this non-linear equation and study the stability and bifurcations of the system. Influence of amplitude of the base excitation and mass ratio on the steady state response of the system is investigated for both simple and subharmonic resonance conditions. Critical bifurcation points are determined from the fixed-point responses and periodic, quasi-periodic responses are also found for different system parameters. The results obtained using the perturbation analysis are compared with the previously published experimental work and are found to be in good agreement. This work will be useful for the designer of a flexible manipulator.  相似文献   

19.
This study represents the transverse vibrations of an axially accelerating Euler–Bernoulli beam resting on multiple simple supports. This is one of the examples of a system experiencing Coriolis acceleration component that renders such systems gyroscopic. A small harmonic variation with a constant mean value for the axial velocity is assumed in the problem. The immovable supports introduce nonlinear terms to the equations of motion due to stretching of neutral axis. The method of multiple scales is directly applied to the equations of motion obtained for the general case. Natural frequency equations are presented for multiple support case. Principal parametric resonances and combination resonances are discussed. Solvability conditions are presented for different cases. Stability analysis is conducted for the solutions; approximate stable and unstable regions are identified. Some numerical examples are presented to show the effects of axial speed, number of supports, and their locations.  相似文献   

20.
Nonlinear dynamical behaviors of an axially accelerating viscoelastic sandwich beam subjected to three-to-one internal resonance and parametric excitations resulting from simultaneous velocity and tension fluctuations are investigated. The direct method of multiple scales is adopted to obtain a set of first-order ordinary differential equations and associated boundary conditions. The frequency and amplitude response curves along with their stability and bifurcation are numerically studied. A great number of dynamic behaviors are presented in the form of phase portraits, time traces, Poincaré sections, and FFT power spectra. Due to modal interaction, various periodic, quasiperiodic, and chaotic behaviors are displayed, depending on the initial conditions. The largest Lyapunov exponent is carried out to determine the midly chaotic response by the convergent form of exponents. Numerical results show various oscillatory behaviors indicating the influence of internal resonance and coupled effects of fluctuating axial velocity and tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号