首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The triple diffusive convection in an Oldroyd-B fluid-saturated porous layer is investigated by performing linear and weakly nonlinear stability analyses. The condition for the onset of stationary and oscillatory is derived analytically. Contrary to the observed phenomenon in Newtonian fluids, the presence of viscoelasticity of the fluid is to degenerate the quasiperiodic bifurcation from the steady quiescent state. Under certain conditions, it is found that disconnected closed convex oscillatory neutral curves occur, indicating the requirement of three critical values of the thermal Darcy-Rayleigh number to identify the linear instability criteria instead of the usual single value, which is a novel result enunciated from the present study for an Oldroyd-B fluid saturating a porous medium. The similarities and differences of linear instability characteristics of Oldroyd-B, Maxwell, and Newtonian fluids are also highlighted. The stability of oscillatory finite amplitude convection is discussed by deriving a cubic Landau equation, and the convective heat and mass transfer are analyzed for different values of physical parameters.  相似文献   

2.
The onset of convection in a horizontal layer of a porous medium saturated with a viscoelastic nanofluid was studied in this article. The modified Darcy model was applied to simulate the momentum equation in porous media. An Oldroyd-B type constitutive equation was used to describe the rheological behavior of viscoelastic nanofluids. The model used for the viscoelastic nanofluid incorporates the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was analytically derived. The effects of the concentration Rayleigh number, Prandtl number, Lewis number, capacity ratio, relaxation, and retardation parameters on the stability of the system were investigated. Oscillatory instability is possible in both bottom- and top-heavy nanoparticle distributions. Results indicated that there is competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity that causes the convection to set in through oscillatory rather than stationary modes. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail.  相似文献   

3.
The problem of finite-amplitude thermal convection in a horizontal layer of a low Prandtl number heated from below and rotating about a vertical axis is studied. Linear stability and weak non-linear theories are used to investigate analytically the Coriolis effect on gravity-driven convection. The non-linear steady problem is solved by perturbation techniques, and the preferred mode of convection is determined by a stability analysis. Finite-amplitude results, obtained by using a weak amplitude, correspond to both stationary and oscillatory convections. These amplitude equations permit to identify from the post-transient conditions that the fluid is subject to Pitchfork bifurcation in the stationary convection and Hopf bifurcation in the oscillatory convection. Thereafter, in the small perturbations hypothesis, an amplitude solution is evaluated and drawn in time and space scales.  相似文献   

4.
The weakly nonlinear stability of the triple diffusive convection in a Maxwell fluid saturated porous layer is investigated. In some cases, disconnected oscillatory neutral curves are found to exist, indicating that three critical thermal Darcy-Rayleigh numbers are required to specify the linear instability criteria. However, another distinguishing feature predicted from that of Newtonian fluids is the impossibility of quasi-periodic bifurcation from the rest state. Besides, the co-dimensional two bifurcation points are located in the Darcy-Prandtl number and the stress relaxation parameter plane. It is observed that the value of the stress relaxation parameter defining the crossover between stationary and oscillatory bifurcations decreases when the Darcy-Prandtl number increases. A cubic Landau equation is derived based on the weakly nonlinear stability analysis. It is found that the bifurcating oscillatory solution is either supercritical or subcritical, depending on the choice of the physical parameters. Heat and mass transfers are estimated in terms of time and area-averaged Nusselt numbers.  相似文献   

5.
Double diffusive convection in a rotating anisotropic porous layer, saturated by a viscoelastic fluid, heated from below and cooled from above has been studied making linear and non-linear stability analyses. The fluid and solid phases are considered to be in equilibrium. In momentum equation, we have employed the Darcy equation which includes both time derivative and Coriolis terms. The linear theory based on normal mode method is considered to find the criteria for the onset of stationary and oscillatory convection. A weak non-linear analysis based on minimal representation of truncated Fourier series analysis containing only two terms has been used to find the Nusselt number and Sherwood number as functions of time. We have solved the finite amplitude equations using a numerical scheme. The results obtained, during the above analyses, have been presented graphically and the effects of various parameters on heat and mass transfer have been discussed. Finally, we have drawn the steady and unsteady streamlines, isotherms, and isohalines for various parameters.  相似文献   

6.
康建宏  谭文长 《力学学报》2018,50(6):1436-1457
基于修正的Darcy模型, 介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展. 通过线性稳定性理论, 分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, Darcy-Brinkman-Oldroyd以及Darcy-Brinkman -Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响. 利用弱非线性分析方法, 揭示失稳临界点附近热对流流动的分叉情况, 以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式. 采用数值模拟方法, 研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的, 而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞, 最后发展为混沌状态.   相似文献   

7.
Linear and non-linear thermal instability in a rotating anisotropic porous medium, saturated with viscoelastic fluid, has been investigated for free-free surfaces. The linear theory is being related to the normal mode method and non-linear analysis is based on minimal representation of the truncated Fourier series analysis containing only two terms. The extended Darcy model, which includes the time derivative and Coriolis terms has been employed in the momentum equation. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. A weak non-linear theory based on the truncated representation of Fourier series method is used to find the thermal Nusselt number. The transient behaviour of the Nusselt number is also investigated by solving the finite amplitude equations using a numerical method. The results obtained during the analysis have been presented graphically.  相似文献   

8.
Double diffusive convection in a fluid-saturated rotating porous layer heated from below and cooled from above is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and non-linear stability analyses. The Darcy model that includes the time derivative and Coriolis terms is employed as momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal and solute diffusions that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number and Taylor number on the stability of the system is investigated. The non-linear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out.  相似文献   

9.
Linear and nonlinear stability analysis for the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. In conjunction with the Brownian motion, the nanoparticle fraction becomes stratified, hence the viscosity and the conductivity are stratified. The nanofluid is assumed to be diluted and this enables the porous medium to be treated as a weakly heterogeneous medium with variation, in the vertical direction, of conductivity and viscosity. The critical Rayleigh number, wave number for stationary and oscillatory mode and frequency of oscillations are obtained analytically using linear theory and the non-linear analysis is made with minimal representation of the truncated Fourier series analysis involving only two terms. The effect of various parameters on the stationary and oscillatory convection is shown pictorially. We also study the effect of time on transient Nusselt number and Sherwood number which is found to be oscillatory when time is small. However, when time becomes very large both the transient Nusselt value and Sherwood value approaches to their steady state values.  相似文献   

10.
We investigate the steady state convection amplitude for solutal convection occurring during the solidification of a rotating mushy layer in a binary alloy system for a new Darcy equation formulation. We adopt a large far field temperature and assume that the initial composition is very close to the eutectic composition. The linear stability analysis showed that rotation stabilised solutal convection. The results of the weak non-linear analysis of stationary convection indicates the presence of Hopf bifurcation, associated with the oscillatory mode, developing at Ta = 3.  相似文献   

11.
The onset of double diffusive convection in a two component couple stress fluid layer with Soret and Dufour effects has been studied using both linear and non-linear stability analysis. The linear theory depends on normal mode technique and non-linear analysis depends on a minimal representation of double Fourier series. The effect of couple stress parameter, the Soret and Dufour parameters, and the Prandtl number on the stationary and oscillatory convection are presented graphically. The Dufour parameter enhances the stability of the couple stress fluid system in case of both stationary and oscillatory mode. The effect of positive Soret parameter is to destabilize the system in case of stationary mode while it stabilizes the system in case of oscillatory mode. The negative Soret parameter enhances the stability in both stationary and oscillatory mode. The couple stress parameter enhances the stability of the system in both stationary and oscillatory modes. The Dufour parameter increases the heat transfer while the couple stress parameter has reverse effect. The Soret parameter has negligible influence on heat transfer. Both Dufour and Soret parameters increases the mass transfer while the couple stress parameter has dual effect depending on the value of the Rayleigh number.  相似文献   

12.
The double diffusive convection in a horizontal couple stress fluid saturated anisotropic porous layer, which is heated and salted from below, is studied analytically. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameter, solute Rayleigh number, Lewis number, couple stress parameter, and Vadasz number on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the thermal anisotropy parameter, couple stress parameter, and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The mechanical anisotropy parameter has destabilizing effect on stationary, oscillatory, and finite amplitude convection. The Lewis number has stabilizing effect in the case of stationary and finite amplitude modes, with dual effect in the case of oscillatory convection. Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decrease with an increase in the values of couple stress parameter, while both increase with an increase in the value of solute Rayleigh number and mechanical anisotropy parameter. The thermal anisotropy parameter and Lewis number have contrasting effect on the heat mass transfer.  相似文献   

13.
The onset of thermal convection in an isothermally heated, horizontal porous layer saturated with viscoelastic liquid was analyzed analytically under the linear theory. An existing constitutive model, which is rather simple, was employed to examine the effects of relaxation times. It is shown clearly that oscillatory instabilities can set in before stationary modes are exhibited. The peculiar behavior of the frequency at the critical state was discussed in connection to polymeric liquids.  相似文献   

14.
The coupled buoyancy and thermocapillary instability, the Bénard–Marangoniproblem, in an electrically conducting fluid layer whose upper surface is deformed and subject to a temperature gradient is studied. Both influences of an a.c. electric field and rotation are investigated. Special attention is directed at the occurrence of convection both in the form of stationary motion and oscillatory convection. The linear stability problem is solved for different values of the relevant dimensionless numbers, namely the a.c. electric Rayleigh number, the Taylor, Rayleigh, Biot, Crispation and Prandtl numbers. For steady convection, it is found that by increasing the angular velocity, one reinforces the stability of the fluid layer whatever the values of the surface deformation and the applied a.c. electric field. We have also determined the regions of oscillatory instability and discussed the competition between both stationary and oscillatory convections. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Stability analysis of double-diffusive convection for viscoelastic fluid with Soret effect in a porous medium is investigated using a modified-Maxwell-Darcy model. We use the linear stability analysis to investigate how the Soret parameter and the relaxation time of viscoelastic fluid effect the onset of convection and the selection of an unstable wavenumber. It is found that the Soret effect is to destabilize the system for oscillatory convection. The relaxation time also enhances the instability of the system. The effects of Soret coefficient and relaxation time on the heat transfer rate in a porous medium are studied using the nonlinear stability analysis, the variation of the Nusselt number with respect to the Rayleigh number is derived for stationary and oscillatory convection modes. Some previous results can be reduced as the special cases of the present paper.  相似文献   

16.
The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq binary fluid, which is heated and salted from below in the presence of Soret and DuFour effects is studied analytically using both linear and non-linear stability analyses. The linear analysis is based on the usual normal mode technique, while the non-linear analysis is based on a minimal representation of double Fourier series. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumbers for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effects of anisotropy parameter, solute Rayleigh number, and Soret and DuFour parameters on the stationary, oscillatory convection, and heat and mass transfer are shown graphically. Some known results are recovered as special cases of the present problem.  相似文献   

17.
Double diffusive convection in a fluid-saturated rotating porous layer is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and nonlinear stability analyses. The Brinkman model that includes the Coriolis term is employed as the momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for the energy equation. The onset criterion for stationary, oscillatory, and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal diffusion, solute diffusion, and rotation that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number, and Taylor number on the stability of the system is investigated. The nonlinear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.  相似文献   

18.
The problem of thermocapillary (Marangoni) convection in a layer of viscoelastic liquid is considered. The stability boundary for this problem has been previously calculated in various cases by a number of authors. Here attention is fixed on the magnitude of the growth rate in the parameter regime corresponding to instability. Two noteworthy features are pointed out. First, there are anomalously large values of the growth rate at or near the limiting special case of a Maxwell fluid. Second, the complex values of the growth rate (corresponding to overstability, or the onset of instability via oscillatory motion) coalesce into real (positive) values at moderately supercritical values of the Marangoni number, suggesting that overstability might be elusive to observation.  相似文献   

19.
A linear stability analysis is carried out to study viscoelastic fluid convection in a horizontal porous layer heated from below and cooled from above when the solid and fluid phases are not in a local thermal equilibrium. The modified Darcy–Brinkman–Maxwell model is used for the momentum equation and two-field model is used for the energy equation each representing the solid and fluid phases separately. The conditions for the onset of stationary and oscillatory convection are obtained analytically. Linear stability analysis suggests that, there is a competition between the processes of viscoelasticity and thermal diffusion that causes the first convective instability to be oscillatory rather than stationary. Elasticity is found to destabilize the system. Besides, the effects of Darcy number, thermal non-equilibrium and the Darcy–Prandtl number on the stability of the system are analyzed in detail.  相似文献   

20.
The problem of the onset of electrohydrodynamic instability in a horizontal layer of Oldroydian viscoelastic dielectric liquid through Brinkman porous medium under the simultaneous action of a certical ac electric field and a vertical temperature gradient is analyzed. Applying linear stability theory, we derive an equation of eight order. Under somewhat suitable boundary conditions, this equation can be solved exactly to yield the required eigenvalue relationship from which various critical values are determined in detail. Both the cases of stationary and oscillatory instabilities are discussed if the liquid layer is heated from below or above. The effects of the porosity of porous medium, the medium permeability, the Prandtl number, the ratio of retardation time to relaxation time, the elastic number, in the presence or absence of Rayleigh number are shown graphically for both cases. Some of the known results are derived as special cases. The electrical force has been shown to be the sole agency causing instability of the considered system since it is much more important than the buoyancy force even if the medium is porous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号