首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared spectra (3500-50 cm-1) of gas and solid and the Raman spectrum (3500-50 cm-1) of liquid 2-fluorobutane, CH3CHFCH2CH3, have been recorded. Variable temperature studies over the range -105 to -150 degrees C of the infrared spectra (3500-400 cm-1) of the sample dissolved in liquid krypton have also been recorded. By utilizing the relative intensities of six conformer pairs each for both Me-trans/F-trans and Me-trans/H-trans, the Me-trans conformer is found to be the lowest energy form with an enthalpy difference to the F-trans conformer of 102 +/- 10 cm-1 ( 1.21+/- 0.12 kJmol-1) whereas the H-trans conformer is the highest energy form with an enthalpy difference of 208 +/- 21 cm-1 ( 2.49 +/- 0.25 kJmol-1) higher than the Me-trans form. At ambient temperature, it is estimated that there is 50 +/- 2% of the Me-trans form, 31 +/- 1% of the F-trans form, and 19 +/- 1% of the H-trans conformer present. Equilibrium geometries and total energies of the three conformers have been determined by ab initio calculations with full electron correlation by the perturbation method to second order using a number of basis sets. A complete vibrational assignment is proposed for the Me-trans conformer and many of the fundamentals have been identified for the other two forms based on the force constants, relative infrared and Raman intensities, and depolarization ratios obtained from MP2/6-31Gd ab initio calculations. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules.  相似文献   

2.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   

3.
The infrared spectra (3200-50 cm(-1)) of gaseous and solid and Raman spectra (3200-10 cm(-1)) of the liquid and solid methylvinyl silyl chloride, CH(2)=CHSiH(CH(3))Cl, and the Si-d isotopomer have been recorded. The three expected stable conformers (the three different groups eclipsing the double bond) have been identified in the fluid phase, but it was not possible to obtain an annealed solid with a single conformer. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton has been carried out. From these data the enthalpy differences between the most stable conformer with the hydrogen atom (HE) eclipsing the double bond to that with the chlorine atom (ClE) and the methyl group (ME) eclipsing the double bond have been determined to be 17+/-4 cm(-1) (203+/-48 Jmol(-1)) and 80+/-12 cm(-1) (957+/-144 Jmol(-1)), respectively. However in the liquid state the ME conformer is the most stable form with enthalpy differences of 13+/-4 and 27+/-7 cm(-1) to the HE and ClE rotamers, respectively. It is estimated that there is 39% of the HE conformer, 35% of the ClE conformer, and 26% of the ME conformer present at ambient temperature. A complete vibration assignment is proposed for the HE conformer which is based on infrared band contours and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. Additionally, several of the fundamentals for the other two conformers have been assigned. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies are reported for all three conformers from MP2/6-31G(d,p) ab initio calculations with full electron correlation. Optimized geometrical parameters and conformational stabilities have been obtained from MP2/6-311+G(d,p) calculations. At this highest level of calculations, the HE conformer is predicted to be more stable by 62 and 84 cm(-1) than the ME and ClE conformers, respectively. The coefficients from the potential function governing the conformational interchange have been obtained from the MP2/6-31G(d) ab initio calculations. By utilizing the frequency of the SiH stretching mode, the r(0)-H distance has been determined to be 1.481 A for the HE conformer. The ab initio calculated quantities are compared to the experimentally determined values where applicable, as well as to some corresponding results for some similar molecules.  相似文献   

4.
Infrared and Raman spectra (3500-60 cm(-1)) of gas and/or liquid and solid 1-bromo-1-silacyclopentane (c-C4H8SiBrH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/6-311+G(2df,2pd) predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but approximately 900 cm(-1) (5.98 kJ/mol) lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predict slightly lower energies for the two envelope forms and considerably lower energy for the planar form compared to the MP2 predictions. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

5.
The infrared (3500-50 cm−1) and Raman (3500-20 cm−1) spectra of 1,2-pentadiene, H2C=C=C(H)CH2CH3 (ethyl allene), have been recorded for both the gaseous and solid states. Additionally, the Raman spectrum of the liquid has been obtained with qualitative depolarization values. In the fluid phases both the cis and gauche conformers have been identified, with the gauche rotamer being the predominant form although it may not be the conformer of lowest energy. In the solid state only the cis conformer remains after repeated annealing of the crystal. The asymmetric torsion of the cis conformer is observed as a series of Q-branch transitions beginning at 103.4 cm−1 and falling to lower frequency. An estimate of the potential function governing conformer interconversion is provided. A complete assignment of the normal modes for the cis conformer is given and several of the fundamentals are assigned for the gauche rotamer. Ab initio electronic structure calculations of energies, conformational geometries, vibrational frequencies, and potential energy functions have been made to complement and assist the interpretation of the infrared and Raman spectra. In particular, the transitions among torsional energy levels for both the symmetric (methyl) and asymmetric (ethyl) motions have been calculated. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

6.
The Raman spectra (3200–100 cm−1) of epifluorohydrin, OCH2CH(CH2F), in variable solvents, as well as that of the gas have been recorded and several of the bands due to the two less stable conformers have been identified. The variable solvent studies were inconclusive on the relative conformer stabilities. The conformational energy differences and optimized geometries for all three conformers have been obtained from ab initio calculations with the 3–21G, 4–31G and 6–31G* basis sets. A normal coordinate analysis has also been performed for each conformer with a force field determined from the 3–21G basis set. Assignment of the vibrational fundamentals observed in the Raman spectra of the fluid phases is proposed based on the normal coordinate calculations. In the liquid phase, one of the conformers with a large dipole moment predominates and it appears to be the gauche-I form which is the only one found in the solid. Utilizing the three rotational constants previously reported for each conformer, along with restricted relative distances for several of the structural parameters among the conformers from ab initio calculations, r0 structural parameters for the heavy atoms have been determined.  相似文献   

7.
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations.  相似文献   

8.
The infrared spectra (3500–40 cm−1) of gaseous and solid and the Raman spectra (3500–30 cm−1) of liquid and solid 1-chlorosilacyclobutane, c-C3H6SiClH, have been obtained. Both the axial and equatorial conformers with respect to the chlorine atom have been identified in the fluid phases. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 211±17 cm−1 (2.53±0.21 kJ/mol), with the equatorial conformer being the more stable form and the only conformer remaining in the annealed solid. At ambient temperatures, approximately 26% of the axial conformers are present in the vapor phase. A complete vibrational assignment is proposed for the equatorial conformer, and many of the fundamentals of the axial conformers have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. Structural parameters have also been obtained using MP2/6-311+G(d,p) ab initio calculations. The r0 parameters for both conformers are obtained from a combination of the ab initio predicted values and the twelve previously reported microwave rotational constants. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

9.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

10.
The Raman spectra (3200–10 cm−1) of ethyl methyl selenide in the gas, liquid and solid phases and the infrared spectra (3200–30 cm−1) of the gas and solid have been recorded. Qualitative depolarization ratios have been obtained for the lines in the Raman spectrum of the liquid. By a variable temperature Raman study of the liquid, it has been determined that the gauche conformer is more stable than the trans rotamer by 158±16 cm−1 (452±46 cal mol−1), and the gauche conformer is the rotamer present in the solid. A complete vibrational assignment for the gauche conformer is presented. All of these data are compared to the corresponding quantities obtained from ab initio Hartree—Fock gradient calculations employing the STO-3G* and 4–31G*/MIDI-4* basis sets. Complete equilibrium geometries have been calculated for both rotamers and the results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

11.
The infrared spectra (3500-50 cm(-1)) of the gas and solid and the Raman spectra (3500-50 cm(-1)) of the liquid and solid have been recorded for 1-fluoro-2-butyne, CH3-C-triple bond-C-CH2F. Equilibrium geometries and energies have been determined by ab initio and hybrid DFT methods using a number of basis sets. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on vibrational-rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of Coriolis sub-band structure in two of the degenerate methyl vibrations. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

12.
The infrared (3500–40 cm−1) spectra of gaseous and solid 1-fluoro-1-methylsilacyclobutane, c-C3H6SiF(CH3), have been recorded. Additionally, the Raman spectrum (3500–30 cm−1) of the liquid has been recorded and quantitative depolarization values have been obtained. Both the axial and equatorial (with respect to the methyl group) conformers have been identified in the fluid phases. Variable temperature (−55–−100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 267±10 cm−1 (3.19±0.12 kJ mol−1), with the axial conformer being the more stable form and the only conformer remaining in the polycrystalline solid. A complete vibrational assignment is proposed for the axial conformer and many of the fundamentals for the equatorial conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311++G** basis sets at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

13.
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules.  相似文献   

14.
The infrared spectra of gaseous and solid 2,2,2-trifluoroethanimidamide, CF3(NH2)C=NH, have been recorded from 4000 to 80 cm–1. A vibrational assignment for the normal modes is proposed based on group frequencies and normal coordinate calculations utilizing C1 symmetry. The structures for both the cis [hydrogen atom of the =NH group is cis to the NH2 group] and trans geometric isomers have been determined from ab initio Hartree-Fock gradient calculations employing the GAUSSIAN-82 program with the 3–21G basis set. The most stable conformer at this level of calculation is found to be a C1, structure with a partially rotated CF3 group and the hydrogen atom of the imine group trans to the NH2 group. The calculated structural parameters have only very small differences between the conformers. Barriers to internal rotation for the NH2 and CF3 groups and vibrational frequencies have been calculated for the C1 form. The results of this investigation are compared with similar data on some corresponding molecules.Taken in part from the thesis of T. G. Sheehan which was submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree, May 1990.  相似文献   

15.
The infrared (3500-80 cm−1) and Raman (3500-20 cm−1) spectra of 3-fluoro-1-butyne, CH3CHFCCH, have been recorded for the gas and solid. Additionally, the Raman spectrum of the liquid has also been recorded to aid in the vibrational assignment. Ab initio electronic structure calculations of energies, geometrical structures, vibrational frequencies, infrared intensities, Raman activities and the potential energy function for the methyl torsion have been calculated to assist in the interpretation of the spectra. The fundamental torsional mode is observed at 251 cm−1 with a series of sequence peaks falling to lower frequency. The three-fold methyl torsional barrier is calculated to be 1441 ± 20 cm−1 (4.12 ± 0.06 kcal mol−1) where the uncertainty is partly due to the uncertainty in values of the V6 term. A complete vibrational assignment is proposed based on band contours, relative intensities, and ab initio predicted frequencies. Several fundamentals are significantly shifted in the condensed phases compared to values in the vapor state.  相似文献   

16.
The infrared spectra (4000–50 cm−1) of gaseous and solid divinylmethoxyborane, (CH2=CH)2BOCH3, as well as the Raman spectra (3500–20 cm−1) of the liquid and solid have been recorded. Qualitative depolarization values have been obtained from the Raman spectrum of the liquid. All normal modes, except the torsions, have been assigned based on infrared band contours, depolarization values, group frequencies, and normal coordinate calculations. From a comparison of the spectra in the fluid and solid states, it is concluded that the molecule exists predominantly in a single conformation in all physical states. Frequencies and potential energy distributions for the normal modes have been calculated with the 3–21G basis set. A comparison of these calculated frequencies to the observed spectra is consistent with the predominant form having a “planar” heavy atom skeleton with Cs, symmetry. From the variable low temperature 13C NMR data, a barrier to rotation about the B-O bond of 10.1 ± 0.1 kcal mol−1 has been determined, which is in excellent agreement with a barrier of 8.5 kcal mol"1 obtained from ab initio calculations. Structural parameters, conformational stability, and barriers to internal rotation have been obtained from ab initio Hartree-Fock gradient calculations employing both the 3–21G and 6–31G* basis sets. The results are compared to the corresponding data for some similar organoboranes.  相似文献   

17.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

18.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

19.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

20.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号