首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantiomeric resolution of a series of 20 asymmetric sulfoxides was systematically investigated by HPLC using multimodal elution with amylose trisR(S)-1-phenylethylcarbamate], amylose tris(3,5-dimethoxyphenylcarbamate) and amylose and cellulose tris(3,5-dimethylphenylcarbamate) phases. The sulfoxide series was composed of aromatic, olefinic and ketosulfoxides, sulfinyl acids and esters. This work has shown that enantioselectivity and enantioresolution of the polysaccharide-based columns can be achieved by changing the type and composition of the mobile phase, widening the applicability of these chiral phases.  相似文献   

2.
 涂敷直链淀粉 三 (3,5 二甲基苯基氨基甲酸酯 )于自制的球形氨丙基硅胶上 ,制备了手性固定相。用该固定相直接拆分了一系列外消旋联苯类保肝药物 ,考察了一系列伯醇 (乙醇、正丙醇、正丁醇 )和异丙醇等流动相改性剂对保留和立体选择性的影响 ,讨论了固定相对样品的作用机理。  相似文献   

3.
The screening conditions of an existing chiral strategy in CEC were tested for their applicability on four chlorine-containing polysaccharide-based stationary phases. The selectors of these phases are cellulose tris(3-chloro-4-methylphenylcarbamate), amylose tris(5-chloro-2-methylphenylcarbamate), cellulose tris(4-chloro-3-methylphenylcarbamate) and cellulose tris(3,5-dichlorophenylcarbamate). The enantioselectivity of these phases was compared with those of the four phases without chlorine (Chiralpak? AD-RH, Chiralcel? OD-RH, Chiralpak? AS-RH and Chiralcel? OJ-RH) used in the earlier defined strategy. A test set of 48 structurally diverse drug compounds was analyzed using the screening conditions of the strategy. These results led to possibilities to upgrade the current screening strategy so that improved success rates are obtained. The chlorine-containing chiral stationary phases demonstrated an added value to the screening process since they showed enantioresolution for compounds not resolved by the chiral stationary phases not containing chlorine in their structure.  相似文献   

4.
HPLC enantioseparation of selected chiral sulfoxides was studied using cellulose and amylose phenylcarbamate derivatives as chiral stationary phases (CSPs). The contributions of various functional groups of a chiral analyte as well as the polysaccharide derivatives in the analyte retention and chiral recognition were evaluated. A very high enantioseparation factor exceeding 110 was observed in the enantioseparation of 2-(benzylsulfinyl)benzamide (BSBA) on cellulose tris(3,5-dichlorophenylcarbamate) (CDCPC) CSP by using 2-propanol as a mobile phase. The enantiomer elution order was opposite on cellulose and amylose phenylcarbamates. For the polysaccharide-type CSPs, pure alcohols such as methanol, ethanol and 2-propanol represent a valuable alternative to more common alcohol-hydrocarbon and reversed-phase eluents.  相似文献   

5.
通过区域选择性方法制备了两种新型淀粉衍生物,分别为淀粉2-苯甲酸酯-3-(4-甲基苯基氨基甲酸酯)-6-(3,5-二氯苯基氨基甲酸酯)和淀粉2-苯甲酸酯-3-(3,5-二氯苯基氨基甲酸酯)-6-(4-甲基苯基氨基甲酸酯),将二者分别涂覆于氨丙基硅胶后用作液相色谱手性固定相。研究表明:所制备的手性固定相显示出特异的手性识别能力,其手性识别能力明显高于均匀取代淀粉衍生物——淀粉三(3,5-二氯苯基氨基甲酸酯),取代基的性质及在葡萄糖单元上的位置对手性固定相的手性识别能力有较大的影响。一些未在商品化的手性柱Chiralpak AD上得到有效分离的手性化合物在所制备的固定相上得到了更好的分离。所测试的8对对映体在淀粉2-苯甲酸酯-3-(4-甲基苯基氨基甲酸酯)-6-(3,5-二氯苯基氨基甲酸酯)固定相上均得到了分离,因而此固定相的手性识别能力较强,具有潜在的应用价值。  相似文献   

6.
The solvent versatility of Chiralpak IA, a new chiral stationary phase (CSP) containing amylose tris(3,5-dimethylphenylcarabamate) immobilized onto silica gel, is investigated for the enantioselective separation of a set of cyclopropane derivatives using ethyl acetate or dichloromethane (DCM) as non-standard mobile phase eluent and diluent, respectively in high-performance liquid chromatography (HPLC). A comparison of the separation of cyclopropanes on both immobilized and coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) in HPLC using a mixture of n-hexane/2-propanol (90/10 and 99/1, v/v) as mobile phase with a flow rate of 0.5 ml/min and UV detection at 254 nm, is demonstrated. The optimized method of separation is used for an online HPLC monitoring for the Rh(II)-catalyzed asymmetric intermolecular cyclopropanations in dichloromethane. Direct analysis techniques without further purification, workup or removal of dichloromethane were summarized. The method provides an easy and direct determination of the enantiomeric excess of the cyclopropanes and selectivity of the catalyst used without any further work up.  相似文献   

7.
选用不同的醇改性剂,在自制的直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)(ADMPC)手性固定相上,对2种吲哚环衍生物对映体进行了手性拆分研究,并考察了样品的保留时间和立体选择性.  相似文献   

8.
The separation of the enantiomers of 17 chiral sulfoxides was studied on polysaccharide‐based chiral columns in polar organic mobile phases. Enantiomer elution order (EEO) was the primary objective in this study. Two of the six chiral columns, especially those based on amylose tris(3,5‐dimethylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate) (Lux Cellulose‐4) proved to be most successful in the separation of the enantiomers of the studied sulfoxides. Interesting examples of EEO reversal were observed depending on the chiral selector or the composition of the mobile phase. For instance, the R‐(+) enantiomer of lansoprazole eluted before the S‐(?) enantiomer on Lux Cellulose‐1 in both methanol or ethanol as the mobile phase, while the elution order was opposite in the same eluents on amylose tris(3,5‐dimethylphenylcarbamate) with the S‐(?) enantiomer eluting before the R‐(+) enantiomer. The R‐(+) enantiomer of omeprazole eluted first on Lux Amylose‐2 in methanol but it was second when acetonitrile was used as the mobile phase with the same chiral selector. Several other examples of reversal in EEO were observed in this study. An interesting example of the separation of four stereoisomers of phenaminophos sulfoxide containing chiral sulfur and phosphor atoms is also reported here.  相似文献   

9.
Three polysaccharide-derived chiral stationary phases (CSP) were evaluated for the resolution of more than 200 racemic compounds of pharmaceutical interest in the reversed-phase (RP) separation mode. The population of test probes was carefully evaluated in order to insure that it covers as completely as possible all structural diversity of chiral pharmaceuticals. RP showed the highest potential for successful chiral resolution in HPLC and LC/MS analysis when compared to normal phase and polar organic separation modes. Method development consisted of optimizing mobile phase eluting strength, nature of organic modifier, nature of additive and column temperature. The newer CSPs, cellulose tris(3-chloro-4-methylphenylcarbamate) and amylose tris(2-chloro-5-methylphenylcarbamate), were compared to the commonly used cellulose tris(3,5-dimethylphenylcarbamate) in regards to their ability to provide baseline resolution. Comparable success rates were observed for these three CSPs of quite complimentary chiral recognition ability. The same method development strategy was evaluated for LC/MS analysis. Diethylamine as additive had a negative effect on analyte response with positive ion mode electrospray (ESI+) MS(/MS) detection, even at very low concentration levels (e.g., 0.025%). Decreasing the organic modifier (acetonitrile or methanol) content in the mobile phase often improved enantioselectivity. The column temperature had only a limited effect on chiral resolution, and this effect was compound dependent. Ammonium hydrogencarbonate was the preferred buffer salt for chiral LC with ESI+ MS detection for the successful separation and detection of most basic pharmaceutical racemic compounds. Ammonium acetate is a viable alternative to ammonium hydrogencarbonate. Aqueous formic acid with acetonitrile or methanol can be successfully used in the separation of acidic and neutral racemates. Cellulose tris(3-chloro-4-methylphenylcarbamate) and amylose tris(2-chloro-5-methylphenylcarbamate) emerge as CSPs of wide applicability in either commonly used separation modes rivaling such well established CSPs as cellulose tris(3,5-dimethylphenylcarbamate). Screening protocols including these two new CSPs in the preferentially screened set of chiral columns have higher success rates in achieving baseline resolution in shorter screening time.  相似文献   

10.
The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC.  相似文献   

11.
Three groups of structurally diverse chiral compounds were used to study the interaction mechanism responsible for stereoselective recognition with teicoplanin as chiral selector in capillary liquid chromatography. Teicoplanin-based chiral stationary phase (CSP) was used. The effect of the variation of mobile phase composition on retention and enantioselective separation was studied. The mobile phase composition suitable for enantioresolution of the various chiral compounds differed according to the interaction forces needed for chiral recognition. Mobile phases with high buffer portion (70-90 vol.%) were preferred for separation of enantiomers of profen non-steroidal anti-inflammatory drugs and chlorophenoxypropionic acid herbicides that require hydrophobic interactions, inclusion and pi-pi interactions for stereoselective recognition with teicoplanin. Higher concentration triethylamine in the buffer (0.5-1.0%) increased resolution of these acids. On the other hand, H-bonding and electrostatic interactions are important in stereoselective interaction mechanism of beta-adrenergic antagonists with teicoplanin. These interaction types predominate in the reversed phase separation mode with high organic modifier content (95% methanol) and in polar organic mobile phases. For this reason beta-adrenergic antagonists were best enantioresolved in the polar organic mode. The mobile phase composed of methanol/acetic acid/triethylamine, 100/0.01/0.01 (v/v/v), provided enantioresolution values of all the studied beta-adrenergic antagonists in the range 1.1-1.9. Addition of teicoplanin to the mobile phase, which was suitable for enantioseparation of certain compounds on the CSP, was also investigated. This system was used to dispose of nonstereoselective interactions of analytes with silica gel support that often participate in the interaction with CSPs. Very low concentration of teicoplanin in the mobile phase (0.1 mM) resulted in enantioselective separation of 2,2- and 2,4-chlorophenoxypropionic acids.  相似文献   

12.
The mechanism of chiral separation on amylose tris(3,5‐dimethylphenylcarbamate) is studied with docking simulations of enantiomers by molecular dynamics. All‐atom models of amylose tris(3,5‐dimethylphenylcarbamate) on the modified silica gel surface were constructed for the docking simulations of metalaxyl and benalaxyl. The elution orders and energetic differences were also predicted based on the intermolecular interactions, which were in agreement with the experimental results. The radial distribution function was employed to analyze the structural features of the enantiomer‐chiral stationary phase complex and used to elucidate the mechanism of chiral separation. The separation of metalaxyl and benalaxyl is mainly controlled by the hydrogen bond. And the binding sites had slight differences for the pair of enantiomers, but obvious differences between different chemicals.  相似文献   

13.
Nine different chiral columns based on covalently immobilized or coated tris(3,5‐dimethylphenylcarbamate) cellulose and amylose have been explored. We evaluated their respective enantioselective potential including the enantioseparation and qualitative characteristics of peaks. The generic screening conditions were using gradient elution from 5 to 40% organic modifier/CO2 during 3 min with about 40 enantiomer pairs. Primary screening was carried out using ten different mobile phases varying in type of additives while using one representative amylose‐ and one cellulose‐based column. The complete evaluation of all nine columns was then carried out using three best performing organic modifiers: (1) methanol + 0.1% trifluoroacetic acid + 0.1% diethylamine, (2) isopropanol + 0.1% trifluoroacetic acid + 0.1% diethylamine, and (3) methanol + 0.1% ammonium hydroxide. Equivalency of different columns with the same chiral selector was not confirmed. Columns with the same stationary phase but different supports or manufacturing methods displayed differences in enantioselectivity and general performance. The similarity corresponded to 62 and 63% for the three cellulose‐coated columns taking CEL1 as the reference. The similarity was 67% for the pair of amylose‐based coated columns. For immobilized columns, the similarity was 69 and 59% for celluloses and amyloses pairs, respectively. The best performing column based on success rate of enantioseparation was Chiralcel OD‐3 when using methanol + 0.1% trifluoroacetic acid and 0.1% diethylamine combined additive.  相似文献   

14.
Enantiomeric separation of two aromatic α-substituted alanine esters was achieved on two commercially available polysaccharide-based chiral stationary phases (CSPs): amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) and cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC). The interactions between enantiomeric analytes and the CSPs were investigated using chromatographic methods and vibration circular dichroism (VCD). The two analytes differ on the aromatic portion of the molecules where one analyte has a π-acceptor aromatic ring (1) while the other has a π-donor aromatic ring (2). When an ADMPC CSP was employed, an increase in the polarity of the mobile phase leads to a reversal of the elution order for the two enantiomers of 1. The elution order of compound 2 was not affected by the polarity of the mobile phase. In order to gain an understanding of these phenomena, the enantiomeric separation of 1 and 2 was also performed on the CDMPC CSP. Interestingly, no reversal of elution order was observed upon the chromatographic separation of both pairs of enantiomers of compounds 1 and 2 upon increasing the solvent polarity when a CDMPC CSP was utilized. To understand the underlying mechanism governing these chiral separations, VCD was applied to study the structure of the ADMPC and CDMPC polymers and their conformational behaviors under chromatographic conditions. For the first time the conformations of the side chains of both polymers were revealed based on the VCD spectra along with DFT calculations. Furthermore, the interactions between the two analytes and the two CSPs were directly probed by VCD. By comparing the spectral differences of the two CSPs in the presence of the two analytes, the detailed interactions involving different functional groups associated with the chiral recognition were elucidated and thus explained the unusual reversal of elution order associated with increasing solvent polarity.  相似文献   

15.
Immobilized amyloglucosidase was used as a chiral stationary phase (CSP). First, the retention and enantioselectivity of several model chiral amines and acids were investigated. We found that this CSP was unable to separate the enantiomers of acids, though all selected amines could be resolved. The adsorption of (R)- and (S)-propranolol and its influence on column temperature and 2-propanol content in the eluent were then studied in detail, using a three-step methodology. The adsorption was first evaluated using Scatchard plots; thereafter, the adsorption was characterized in detail by calculating the adsorption energy distribution. With this model-independent information, a better judgment could be made of the possible adsorption models selected in the last step, the model fitting to the data. In the case examined, the bi-Langmuir model (containing nonselective and enantioselective sites) describes the system well. The retention of (R)- and (S)-propranolol at low temperatures increases with the content of 2-propanol in the eluent, due to the increased saturation capacity of the enantioselective sites. The retention is an enthalpy-driven process at both types of sites, whereas the enantioseparation is due to differences between the entropy changes of the two enantiomers at the enantioselective sites. The enthalpy of adsorption at the nonselective sites is almost identical at the two concentrations of 2-propanol in the eluent. Enantioselective adsorption, on the other hand, is more exothermic at higher modifier content (20%). Thus, at high temperatures the retention decreases with increasing modifier content, whereas the opposite (unusual) trend is the case at low temperatures.  相似文献   

16.
在Pirkle型的(S,S)-Whelk-O 1与纤维素衍生物型的CDMPC两种手性柱上对六种 外消旋萘普生酯进行了对映体分离,通过研究烷氧基结构上的差异以及流动相中不 同的醇类添加剂对手性识别的影响,探讨和比较了外消旋萘普生酯在两种手性固定 相上手性识别的机理。对于 (S,S)-Whelk-O 1, 溶质与固定相之间的吸引作用于 手性识别的主要因素,而对于CDMPC,溶质在手性空腔中的空间适应性很可能是手 性识别的关键。  相似文献   

17.
Enantioseparations of chiral compounds with different structures were studied in non-aqueous capillary electrochromatography (NAQ CEC). Three different polysaccharide derivatives, cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD), amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD) and cellulose tris(4-methylbenzoate) (Chiralcel OJ) were used as chiral stationary phases (CSPs). Methanolic or ethanolic ammonium acetate solutions served as a mobile phase. The effect of the type of the CSP, the loading of the chiral selector on wide-pore aminopropyl derivatized silica gel and operational parameters such as apparent pH, applied voltage, etc. on the EOF and chromatographic characteristics (alpha, N, Rs) were studied. NAQ CEC represents a valuable alternative and an extension to chiral separations by HPLC with common-size columns as well as to capillary LC and CEC in aqueous buffers.  相似文献   

18.
通过糖单元6-位羟基的保护和去保护,运用区域选择性方法合成了6种新型多糖类氨基甲酸酯衍生物,分别为纤维素/直链淀粉-[2,3-二(3,5-二甲基苯基)-6-环己基]氨基甲酸酯、[2,3-二(3,5-二氯苯基)-6-环己基]氨基甲酸酯及[2,3-二(4-氯苯基)-6-环己基]氨基甲酸酯,并将其涂敷在氨丙基硅胶的表面制备HPLC手性固定相.利用1H-NMR与FTIR光谱技术对所合成衍生物进行结构表征和分析,并应用HPLC法评价其对于9种手性化合物的手性识别能力.通过与以手性识别能力高而著称且含有单一取代基的纤维素/直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)等手性固定相的对比分析表明,所合成新型手性固定相对于某些对映体显示出更优的手性识别能力.由进一步分析表明,糖单元2-、3-和6-位取代基的性能对于纤维素和直链淀粉氨基甲酸酯类衍生物的手性识别能力均具有较大影响.  相似文献   

19.
Jin Z  Hu F  Wang Y  Liu G  Wang F  Pan F  Tang S 《色谱》2011,29(11):1087-1092
为了扩展多糖类手性固定相的种类,制备了基于淀粉及纤维素三(3-三氟甲基苯基氨基甲酸酯)的涂敷型手性固定相,以正己烷-异丙醇混合液为流动相,对8种手性化合物进行了高效液相色谱拆分。研究表明: 虽然与应用最广泛的分别以淀粉及纤维素三(3,5-二甲基苯基氨基甲酸酯)为手性选择因子的商品化手性柱Chiralpak AD和Chiralcel OD相比,所制备的手性固定相的手性分离能力较低,但纤维素三(3-三氟甲基苯基氨基甲酸酯)手性固定相显示出特异的手性识别能力,一些手性化合物在此固定相上得到了比在Chiracel OD上更好的分离;所制备的手性固定相的手性识别能力随流动相中异丙醇含量的降低而变好,当流动相中正己烷与异丙醇的体积比为95:5时所制备的手性固定相显示出相对较高的手性识别能力;总体来说,淀粉三(3-三氟甲基苯基氨基甲酸酯)手性固定相的手性识别能力稍强于纤维素三(3-三氟甲基苯基氨基甲酸酯)手性固定相,同时两种手性固定相的手性识别能力具有一定的互补性。  相似文献   

20.
G. Uray  W. Lindner 《Chromatographia》1990,30(5-6):323-327
Summary The synthesis of optically pure (S,S)-N-3,5-dinitrobenzoyl-1,2-diphenylethane-1,2-diamine (DNB-DPE-DA) immobilized via an undecenoyl spacer onto silica gel and the resolving power of this new chiral stationary phase (CSP) for normal phase HPLC are described. The phase shows good enantioselectivity for various chiral compounds containing amide (imide) functionality and π-donor type aromatic subsitutents, and also for some alcohols and sulfoxides. The influence of protic and nonprotic mobile phase components on the enantioselectivity has also been examined. Dedicated to Prof. Dr. G. Zigeuner (Karl-Franzens University of Graz) on the occasion of his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号