首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An uncommon example of stable mixed-ligand zinc phosphite with genuine pores has been synthesized by using zinc metal, inorganic phosphite acid, thio-functionalized O-donor (2,5-thiophenedicarboxylate, TPDC), and tetradentate N-donor [1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene, TIMB] units assembled into one crystalline structure according to a hydro(solvo)thermal method. This is a very rare case of a metal phosphite incorporating both N- and O-donor ligands. The tetradentate TIMB linker bound to zinc atoms of the isolated zincophosphite hexamers to form a 3D open-framework structure by crosslinking structural components of 1D chains and 2D layers. Here, the TPDC ligand acts as a monodentate binding model to functionalize its porous structure with the uncoordinated S atom and COO group. Interestingly, this compound demonstrates the highest H2 storage capacity among organic–inorganic hybrid metal phosphates (and phosphites), and a good CO2 capture at 298 K compared with the majority of crystalline materials. The possible adsorption sites and selectivity for CO2 over H2, N2, and CO at 298 K were calculated by using density functional theory (DFT), the ideal adsorption solution theory (IAST), and fitting experimental pure-component adsorption data.  相似文献   

2.
利用傅立叶变换红外光谱技术(FT-IR)考察了CO2和CO2+H2在不同形态氧化锆上的吸附和转化行为,结果表明,氧化锆的形态影响CO2的吸附形式和表面物种的生成.无定型氧化锆上主要生成碳酸氢盐和离子碳酸盐,单斜氧化锆上还出现了双齿碳酸盐,而在四方氧化锆上出现最强的线式吸附CO2,并生成聚碳酸盐.在氢气存在的条件下,单斜氧化锆上生成甲烷而在四方氧化锆上则生成甲酸盐.  相似文献   

3.
赵洁  邓帅  赵力  赵睿恺 《化学进展》2022,34(3):643-664
大型湿气源排放中普遍存在的水汽是制约吸附碳捕集规模化发展的重要挑战之一。H2O的极性往往会导致吸附材料的CO2捕集率降低甚至出现失效,也会造成捕集系统产生温降、压降等寄生损失,甚至形成设备腐蚀、吸附剂中毒等不利影响,最终额外能耗和成本大幅提高。为解决上述挑战,深入理解CO2与H2O共吸附过程的作用机制,据此开发成本合理、再生能耗低且对水气不敏感的高效CO2吸附剂及吸附技术是实现湿气源下高效吸附碳捕集的重要途径。目前,由于分散在多个领域且各有侧重,关于H2O对CO2吸附影响的机制分析缺乏汇总与概括,难以形成相对统一的观点。本文针对CO2与H2O共吸附过程,从宏观与微观层面进行了详细综述。首先,基于共吸附机制的基础研究,依次介绍了竞争吸附、变湿吸附和呼吸效应领域的研究进展并进行了简要评价。其次,基于共吸附的应用研究,阐述了湿气源CO2捕集技术的吸附剂研发与工艺改进两部分的现状及进展,也对不同湿气源下CO2捕集水平进行了简要评价。最后,总结了目前研究中的不足之处并展望了未来的研究方向。本文将分散于各领域的CO2与H2O共吸附过程进行集中归纳、分析和对比,或可为湿气源碳捕集技术提供有效的指导。  相似文献   

4.
Multiple-layered vacuum swing adsorption technique was used and investigated in order to effectively keep the feed gas that flows into zeolite 13X zone being dry and keep the CAPEX down(not adding pre-treatment equipment). Activated carbon fiber(ACF) and alumina CDX were laid at the lower parts of the column as pre-layers to selectively adsorb moisture. Zeolite 13X was laid on the top of those two adsorbents as the main layer to capture CO2. Systematic cyclic experiments show that water vapor was successfully contained within the ACF and CDX layers at cyclic steady states. It was also found that ultimate vacuum pressure played a decisive factor for stabilizing the water front, and achieving good CO2 purity and recovery. The findings also reveal the pathway for large-scale CO2 capture process.  相似文献   

5.
Utilization of porous materials for gas capture and separation is a hot research topic. Removal of acetylene (C2H2) from ethylene (C2H4) is important in the oil refining and petrochemical industries, since C2H2 impurities deactivate the catalysts and terminate the polymerization of C2H4. Carbon dioxide (CO2) emission from power plants contributes to global climate change and threatens the survival of life on this planet. Herein, 2D crystalline polyimide porous organic framework PAF-120, which was constructed by imidization of linear naphthalene-1,4,5,8-tetracarboxylic dianhydride and triangular 1,3,5-tris(4-aminophenyl)benzene, showed significant thermal and chemical stability. Low-pressure gas adsorption isotherms revealed that PAF-120 exhibits good selective adsorption of C2H2 over C2H4 and CO2 over N2. At 298 K and 1 bar, its C2H2 and CO2 selectivities were predicted to be 4.1 and 68.7, respectively. More importantly, PAF-120 exhibits the highest selectivity for C2H2/C2H4 separation among porous organic frameworks. Thus PAF-120 could be a suitable candidate for selective separation of C2H2 over C2H4 and CO2 over N2.  相似文献   

6.
以Mg(NO3)2·6H2O和2,5-二羟基对苯二甲酸为原料, 采用溶剂热法制备了金属有机骨架材料Mg-MOF-74. 利用X射线衍射(XRD)、 红外光谱(FTIR)和扫描电子显微镜(SEM)等测试手段对其结构、 形貌和性能进行了分析, 并利用自制穿透实验装置研究了产物吸附CO2/H2O的性能. 结果表明: 合成的样品纯度高, 结构完整, 形貌规则有序, 具有较高的CO2吸附量. 双组分CO2/H2O穿透实验结果证实, 在水蒸气存在情况下, 与沸石13X相比, Mg-MOF-74仍具有较高的CO2吸附能力, 可用于分离高湿烟道气中的CO2.  相似文献   

7.
Adsorption of supercritical fluids methane, nitrogen and argon by active carbons was studied up to a pressure of 500 bar. A three-parameter isothermal equation was used to represent the adsorption equilibrium. This isothermal equation is based on a physical model conception which had already been used for the modelling of adsorption processes with a pressure up to 150 bar. Beside the exact knowledge of the measurable parameters pressure, temperature and fluid composition, the density of the adsorbate are essential for the evaluation of the adsorption analysis. The fluid density can be determined either via equations of state, which is normally the most practicable and fastest way, or via lift measurements of a lowering body in the fluid based on the principle of Archimedes. This work represents and discusses the question of to what extent the fluid density determined under real conditions via equations of state, using, for example, equation of Bender, corresponds to the fluid density measured under high-pressure. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The fuel claddings in the Pressurised Water Reactor are corroded in water at high temperature and high pressure. The technical device ableto follow continuously the corrosion rate in conditions close to this medium does not yet exist. That is the reason why a high pressure thermogravimetric installation based on magnetic suspension has been designed to study in situ the oxidation kinetics of the zirconium based alloys under water vapour until 50 bars of pressure at 415°C. The accuracy of measurements is about 5·10−5 g under 2 bars, and 10−4 g under 50 bars. The reproducibility of measurements was verified and the deviation regarding post test weighing at room temperature is around 5·10−5 g what is clearly satisfying. Finally, the results presented in this work allow validating the high pressure thermogravimetric measurements obtained with this magnetic suspension device.  相似文献   

9.
Nitrogen-doped mesoporous carbon material was prepared via a simple one-step thermolysis method via the carbonization of ionic liquid, 1-cyanomethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([MCNIm]+[Nf2T]-). The nanostructure of the resultant carbon material was characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM) and the types of N-containing groups of the carbon material were investigated by X-ray photoelectron spectroscopy(XPS). The N-content of the carbon material is 18.6%(mass fraction) based on the elemental analysis. The produced mesoporous carbon material was further used as the solid sorbent for H2 and CO2. The hydrogen uptake capacity and H2 isosteric heat of the carbon material were discussed. Furthermore, the nitrogen-containing carbon material as good sorbent shows relatively high adsorption and separation ability for CO2 from CH4, for which the heat of CO2 adsorption(Qst) is 31.8 kJ/mol. The mesoporous structure and nitrogen functionality make the carbon material with high adsorption capacity and selectivity for CO2 and ability to store H2, indicating that this kind of nitrogen-doped carbon material originated from ionic liquids is a promising sorbent material for high-performance separation and adsorption.  相似文献   

10.
The separation of C2H2/CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal–organic framework (M′MOF), [Fe(pyz)Ni(CN)4] ( FeNi‐M′MOF , pyz=pyrazine), with multiple functional sites and compact one‐dimensional channels of about 4.0 Å for C2H2/CO2 separation. This MOF shows not only a remarkable volumetric C2H2 uptake of 133 cm3 cm?3, but also an excellent C2H2/CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2H2‐capture amount of 4.54 mol L?1, thus outperforming most previous benchmark materials. The separation performance of this material is driven by π–π stacking and multiple intermolecular interactions between C2H2 molecules and the binding sites of FeNi‐M′MOF . This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi‐M′MOF as a promising material for C2H2/CO2 separation.  相似文献   

11.
 应用红外光谱和程序升温脱附技术研究了Rh-Mn-Li-Ti/SiO2催化剂上H2对CO吸附和脱附的影响. 结果表明,预吸附的H2主要占据线式CO的吸附位. 共吸附时H2与CO在Rh位上形成了羰基氢化物,从而导致线式物种谱带红移,且高的H2浓度有利于CO的吸附. 在323 K下, H2对预吸附的CO谱带位置和强度没有影响. 但是,随着温度的升高, H2的存在促进了弱吸附CO的脱附,并使之重新吸附; 同时, H2促进了强吸附CO的解离,增强了CO的吸附强度和催化剂的吸附能力.  相似文献   

12.
Acetylene (C2H2) capture is a step in a number of industrial processes, but it comes with a high-energy footprint. Although physisorbents have the potential to reduce this energy footprint, they are handicapped by generally poor selectivity versus other relevant gases, such as CO2 and C2H4. In the case of CO2, the respective physicochemical properties are so similar that traditional physisorbents, such as zeolites, silica, and activated carbons cannot differentiate well between CO2 and C2H2. Herein, we report that a family of three isostructural, ultramicroporous (<7 Å) diamondoid metal–organic frameworks, [Cu(TMBP)X] (TMBP=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), TCuX (X=Cl, Br, I), offer new benchmark C2H2/CO2 separation selectivity at ambient temperature and pressure. We attribute this performance to a new type of strong binding site for C2H2. Specifically, halogen ⋅⋅⋅ HC interactions coupled with other noncovalent in a tight binding site is C2H2 specific versus CO2. The binding site is distinct from those found in previous benchmark sorbents, which are based on open metal sites or electrostatic interactions enabled by inorganic fluoro or oxo anions.  相似文献   

13.
Regulating the structure of metal-organic frameworks (MOFs) by adjusting the ligands reasonably is expected to enhance the interaction of MOFs on special molecules/ions, which has significant application value for the selective adsorption of guest molecules. Herein, two tricarboxylic ligands H3L−Cl and H3L−NH2 were designed and synthesized based on the ligand H3TTCA by replacing part of the benzene rings with C=C bonds and modifying the chlorine and amino groups on the 4-position of the benzene ring. Two 3D Fe-MOFs ( UPC-60-Cl and UPC-60-NH2 ) with the new topology types were constructed. As the C=C bonds of the ligands have flexible torsion angles, UPC-60-Cl features three types of irregular 2D channels, while UPC-60-NH2 has a cage with two types of windows on the surface. The synergistic effect of unique channels and modification of functional groups endows UPC-60-Cl and UPC-60-NH2 with high adsorption capacity for organic dyes. Compound UPC-60-Cl shows high adsorption capacity for CV (147.2 mg g−1), RHB (100.3 mg g−1), and MO (220.9 mg g−1), whereas UPC-60-NH2 exhibits selective adsorption of MO (158.7 mg g−1). Meanwhile, based on the diverse pore structure and modification of active sites, UPC-60-Cl and UPC-60-NH2 show the selective separation of equimolar C2H2/CO2. Therefore, reasonable regulation of organic ligands plays a significant role in guiding the structure diversification and performance improvement of MOFs.  相似文献   

14.
The monodisperse chitosan-conjugated Fe(3)O(4) nanoparticles with a mean diameter of 13.5 nm were fabricated by the carboxymethylation of chitosan and its covalent binding onto Fe(3)O(4) nanoparticles via carbodiimide activation. The carboxymethylated chitosan (CMCH)-conjugated Fe(3)O(4) nanoparticles with about 4.92 wt.-% of CMCH had an isoelectric point of 5.95 and were shown to be quite efficient as anionic magnetic nano-adsorbent for the removal of acid dyes. Both the adsorption capacities of crocein orange G (AO12) and acid green 25 (AG25), as the model compounds, decreased with increasing pH, and the decreasing effect was more significant for AO12. On the contrary, the increase in the ionic strength decreased the adsorption capacity of AG25 but did not affect, obviously, the adsorption capacity of AO12. By the addition of NaCl and NaOH, both AO12 and AG25 could desorb and their different desorption behavior could be attributed to the combined effect of pH and ionic strength. From the adsorption kinetics and thermodynamics studies, it was found that both the adsorption processes of AO12 and AG25 obeyed the pseudo-second-order kinetic model, Langmuir isotherm, and might be surface reaction-controlled. Furthermore, the time required to reach the equilibrium for each one was significantly shorter than those using the micro-sized adsorbents due to the large available surface area. Also, based on the weight of chitosan, the maximum adsorption capacities were 1 883 and 1 471 mg x g(-1) for AO12 and AG25, respectively, much higher than the reported data. Thus, the anionic magnetic nano-adsorbent could not only be magnetically manipulated but also possessed the advantages of fast adsorption rate and high adsorption capacity. This could be useful in the fields of separation and magnetic carriers. [formula in text].  相似文献   

15.
We report the water adsorption/desorption behavior and dynamic magnetic properties of the Pt−Cl chain complex [{[Pt(en)2][PtCl2(en)2]}3][{(MnCl5)Cl3}2] ⋅ 12H2O ( 1 ). Upon heating 1 in a vacuum, we obtained the dehydrated form [{[Pt(en)2][PtCl2(en)2]}3][{(MnCl5)Cl3}2] ( 1DH ). The framework structures of 1 and 1DH are identical, and both complexes underwent slow magnetic relaxation. However, the magnetic relaxation times for 1DH were shorter than those for 1 , meaning that the dynamic magnetic properties were controlled upon water vapor adsorption/desorption. From detailed analyses of the dynamic magnetic behavior, a phonon-bottleneck effect contributes to the magnetic relaxation processes. We discuss the mechanism for the changes in the magnetic relaxation processes upon dehydration in terms of the heat capacity and thermal conductivity.  相似文献   

16.
以球磨后的粉煤灰磁珠(MS)颗粒为磁核,通过溶胶凝胶法和反相微乳液法依次包覆SiO2和壳聚糖(CS),制备了MS@SiO2@CS磁性微球。利用扫描电镜及能量色散谱仪、热重分析仪、红外光谱仪、X射线衍射仪、振动样品磁强计对所得样品的结构和磁性进行了系统表征。结果表明,磁珠颗粒表面实现了逐层包覆,较均匀的分散于壳聚糖基体中,MS@SiO2@CS微球的比饱和磁化强度可达7.04 emu·g-1。Cu2+离子吸附实验表明,所得磁性壳聚糖微球对Cu2+具有良好的吸附能力,最大吸附量可达11.08 mg·g-1;而且可通过磁选法高效固液分离。吸附动力学研究表明,MS@SiO2@CS微球对Cu2+离子的吸附符合准二级动力学模型,以化学吸附为主。  相似文献   

17.
H2、CO、CH4混合气体爆炸极限的多元回归分析   总被引:2,自引:0,他引:2  
H2,CO,CH4是化工生产中常遇到的混合气体,若与空气混合,一定条件下就构成多元爆炸性混合气体,浓度爆炸极限是一个关键性数据。对于多元可燃性混合气体,主要采用Le Chatelier经验方程或对其进行改进后的公式进行估算,但Chatelier经验方程只适用于烃类的混合气体与空气的混合物,对于含氢的多元爆炸性混合气体,预测误差很大。本文对大量的浓度爆炸极限数据进行了多元线性回归分析,建立了爆炸极限预测模型,对于指导多元混合气体支链燃烧与爆炸的理论研究和实践,具有一定的参考价值。  相似文献   

18.
The use of adsorption technology to remove H2S from synthetic gas (H2S and N2) using a goethite-based adsorbent was investigated. The influence of the H2S feed concentration (150–600 mg), the adsorbent dosage (1–4 g), and the gas flow rate (210–540 cm3/min) on the breakthrough curves and H2S adsorption on the adsorbent at the breakthrough point was investigated. Dynamic column experiments were performed to provide data for the theoretical models and to verify the performance of the system in the adsorption process. The theoretical models used in the present work were found to predict the adsorption breakthrough performance reasonably well.  相似文献   

19.
以球磨后的粉煤灰磁珠(MS)颗粒为磁核,通过溶胶凝胶法和反相微乳液法依次包覆SiO_2和壳聚糖(CS),制备了MS@SiO_2@CS磁性微球。利用扫描电镜及能量色散谱仪、热重分析仪、红外光谱仪、X射线衍射仪、振动样品磁强计对所得样品的结构和磁性进行了系统表征。结果表明,磁珠颗粒表面实现了逐层包覆,较均匀的分散于壳聚糖基体中,MS@SiO_2@CS微球的比饱和磁化强度可达7.04 emu·g~(-1)。Cu~(2+)离子吸附实验表明,所得磁性壳聚糖微球对Cu~(2+)具有良好的吸附能力,最大吸附量可达11.08 mg·g~(-1);而且可通过磁选法高效固液分离。吸附动力学研究表明,MS@SiO_2@CS微球对Cu~(2+)离子的吸附符合准二级动力学模型,以化学吸附为主。  相似文献   

20.
刘丽影  宫赫  王哲  李刚  杜涛 《化学进展》2018,30(6):872-878
变压吸附法在捕集烟气中的CO2这一领域中显示出强大的优越性,但实际电厂烟气含有少量的水蒸气,这对利用常规吸附剂捕集CO2造成很大挑战。为解决上述瓶颈问题,改进变压吸附工艺以及开发对湿度不敏感、高效的吸附剂成为最主要的途径。本文详细介绍了两种常用的变压吸附工艺,即多层变压吸附及微波辅助真空再生法分离高湿烟气的研究进展,综述了近年来研发的适于捕集高湿烟气的高效吸附剂,系统阐述了各种吸附剂的物理化学特性及其吸附CO2、H2O的机制,并在此基础上讨论了变压吸附技术捕集高湿烟气时存在的问题,提出了研究展望。相信随着人们对变压吸附工艺的改进以及对新型高效吸附剂的进一步研发,必将显著降低捕集高湿烟气中CO2的成本,这将对燃煤电厂等高湿CO2排放源的温室气体减排具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号