首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report measurements of the temperature-dependent anisotropies (gamma(lambda) and gamma(xi)) of both the London penetration depth lambda and the upper critical field of MgB2. Data for gamma(lambda)=lambda(c)/lambda(a) was obtained from measurements of lambda(a) and lambda(c) on a single crystal sample using a tunnel diode oscillator technique. gamma(xi)=H(perp)c(c2)/H(||c)(c2) was deduced from field-dependent specific heat measurements on the same sample. Gamma(lambda) and gamma(xi) have opposite temperature dependencies, but close to T(c) tend to a common value (gamma(lambda) similar or equal to gamma(xi)=1.75 +/- 0.05). These results are in good agreement with theories accounting for the two-gap nature of MgB2.  相似文献   

2.
The temperature dependence of the upper (H(c2)) and lower (H(c1)) critical fields has been deduced from Hall probe magnetization measurements of high quality MgB2 single crystals along the two main crystallographic directions. We show that Gamma(H(c2))=H(c2 axially ab)/H(c2 axially c) and Gamma(H(c1))=H(c1 axially c)/H(c1 axially ab) differ significantly at low temperature (being approximately 5 and approximately 1, respectively) and have opposite temperature dependencies. We suggest that MgB2 can be described by a single field dependent anisotropy parameter gamma(H) (=lambda(c)/lambda(ab)=xi(ab)/xi(c)) that increases from Gamma(H(c1)) at low field to Gamma(H(c2)) at high field.  相似文献   

3.
The anisotropic field dependence of the Sommerfeld coefficient gamma has been measured down to B-->0 by combining specific heat and Hall probe magnetization measurements in MgB2 single crystals. We find that gamma(B,theta) is the sum of two contributions arising from the sigma and pi band, respectively. We show that gammasigma(B,theta)=B/Bc2(theta) where Bc2(theta)=Bc2ab/sqrt[sin2theta+Gamma2cos2theta] with Gamma approximately 5.4 (theta being the angle between the applied field and the c axis) and gammapi(B,theta)=gammapi(B)=B/Bpi(B). The "critical field" of the pi band Bpi is fully isotropic but field dependent increasing from approximately 0.25 T for B< or =0.1 T up to 3 T approximately Bc2c for B-->3 T. Because of the coupling of the two bands, superconductivity survives in the pi band up to 3 T but is totally destroyed above for any orientation of the field.  相似文献   

4.
We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R(theta,H) = R(H/Hctheta) where Hctheta =Hc0(cos2theta + gamma(-2)sin2theta)(-1/2) is the angular dependent critical field, gamma is the width to thickness ratio, and Hc0 is the critical field in the thickness direction at theta=0 degrees . The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.  相似文献   

5.
Vortex thermal fluctuations in heavily underdoped Bi(2)Sr(2)CaCu(2)O(8+delta) (T(c)=69.4 K) are studied using Josephson plasma resonance. From the zero-field data, we obtain the c-axis penetration depth lambda(L,c)(0)=230+/-10 micrometer and the anisotropy ratio gamma(T). The low plasma frequency allows us to study phase correlations over the whole vortex solid state and to extract a wandering length r(w) of vortex pancakes. The temperature dependence of r(w) as well as its increase with dc magnetic field is explained by the renormalization of the vortex line tension by the fluctuations, suggesting that this softening is responsible for the dissociation of the vortices at the first order transition.  相似文献   

6.
The temperature dependence of the anisotropy parameter of upper critical field γHc2(T)=H_{c2}||(T)/H_{c2}^{\bot}(T) and London penetration depth γλ(T)=λ_{\perp} (T)/λ_{\bot} (T) are calculated using two-band Ginzburg-Landau theory for layered superconductors. It is shown that, with decreasing temperature the anisotropy parameter γ_{H_{c2}}(T) is increased, while theLondon penetration depth anisotropy γλ(T) reveals n opposite behavior.Results of our calculations are in agreement with experimental datafor single crystal MgB2 nd with other calculations. Results of an analysis of magnetic field Hc1 in a single vortex between superconducting layers are also presented.  相似文献   

7.
We performed a coincidence measurement of two nucleons emitted from the nonmesonic weak decay of lambda(5)He formed via the 6Li(pi+, K+) reaction. The energies of the two nucleons and the pair number distributions in the opening angle between them were measured. In both np and nn pairs, we observed a clean back-to-back correlation coming from the two-body weak reactions of lambda p --> np and lambda n --> nn, respectively. The ratio of the nucleon pair numbers was N(nn)/N(np) = 0.45 +/- 0.11(stat) +/- 0.03(syst) in the kinematic region of cos theta(NN) < -0.8. Since each decay mode was exclusively detected, the measured ratio should be close to the ratio of gamma(lambda p --> np)/gamma(lambda n --> nn). The ratio is consistent with recent theoretical calculations based on the heavy meson and/or direct-quark exchange picture.  相似文献   

8.
The longitudinal acoustic (LA) mode of bulk GexSe1-x glasses is examined in Brillouin scattering (BS) over the 0.15相似文献   

9.
Measurements of the transition temperature Tc, the upper critical field Hc2, and the magnetic penetration depth lambda under hydrostatic pressure (up to approximately 9.2 kbar) in the YB6 superconductor were carried out. A pronounced and negative pressure effect (PE) on Tc and Hc2 with dTc/dp=-0.0547(4) K/kbar and micro0dHc2(0)/dp=-4.84(20) mT/kbar, and zero PE on lambda(0) were observed. The PE on the coherence length dxi(0)/dp=0.28(2) nm/kbar was calculated from the measured pressure dependence of Hc2(0). Together with the zero PE on the magnetic penetration depth lambda(0), our results imply that the Ginzburg-Landau parameter kappa(0)=xi(0)/lambda(0) depends on pressure and that pressure "softens" YB6, e.g., moves it to the type-I direction.  相似文献   

10.
The flux-line lattice in CaAlSi has been studied by small-angle neutron scattering. A well-defined hexagonal flux-line lattice is seen just above H(c1) in an applied field of only 54 Oe. A 30° reorientation of this vortex lattice has been observed in a very low field of 200 Oe. This reorientation transition appears to be first-order and could be explained by nonlocal effects. The magnetic field dependence of the form factor is well-described by a single penetration depth of λ=1496(1) ? and a single coherence length of ξ=307(1) ? at 2 K. At 1.5 K, the penetration depth anisotropy is γ(λ)=2.7(1), with the field applied perpendicular to the c axis, and agrees with the coherence length anisotropy determined from critical field measurements.  相似文献   

11.
Magnetization measurements under hydrostatic pressure up to 8 kbar in the pyrochlore superconductor RbOs2O6 (T(c) approximately or equal 6.3 K at p=0) were carried out. A positive pressure effect on T(c) with dT(c)/dp=0.090(3) K/kbar was observed, whereas no pressure effect on the magnetic penetration depth lambda was detected. The pressure independent ratio 2 Delta(0)/k(B)T(c)=3.72(2) (Delta(0) is the superconducting gap at zero temperature) was found to be close to the BCS value 3.52. Magnetization and muon-spin rotation measurements of lambda(T) indicate that RbOs2O6 is an adiabatic s-wave BCS-type superconductor. The value of lambda extrapolated to zero temperature and ambient pressure was estimated to be 230(30) nm.  相似文献   

12.
Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay lambda(+)(c)lambda--> e(+)nu(e). By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R= f(2)/f(1) = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M(pole) = [2.21 +/- 0.08(stat) +/- 0.14(syst)] GeV/c(2), and the decay asymmetry parameter of the lambda(+)(c), alpha (lambda(c)) = -0.86 +/-0.03(stat) +/- 0.02(syst), for q(2) = 0.67 (GeV/c(2))(2). We compare the angular distributions of the lambda(+)(c) and lambda(-)(c) and find no evidence for CP violation: A(lambda(c)) = (alpha(lambda(c)) + alpha (lambda(c)))/(alpha(lambda(c))-alpha(lambda(c))) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A(lambda), for ppi(-).  相似文献   

13.
Specific heat has been investigated in a layered nitride superconductor, Li(0.12)ZrNCl, with T(c)=12.7 K. The obtained data have shown a marked dichotomy: The specific heat jump at T(c) (DeltaC/gamma(n)T(c)=1.8) and the superconducting gap ratio (2Delta/k(B)T(c)=4.6-5.2) have indicated an intermediate to a strong coupling of electrons, while the upper limit of the electron-phonon coupling constant lambda has directly been estimated to be 0.22, which belongs to a weak coupling regime. Furthermore, the rapid increase of gamma as a function of magnetic field suggests that the present material has an anisotropic s wave gap.  相似文献   

14.
We report measurements of the magnetic penetration depth lambda in single crystals of PrOs4Sb12 down to 0.1 K, with the ac field applied along the a, b, and c directions. In all three field orientations, lambda approximately T2 and superfluid density rho(s) approximately T2 for T<0.3T(c). Data are best fit by the 3He A-phase-like gap with multidomains, each having two point nodes along a cube axis, and parameter Delta(0)(0)/k(B)T(c)=2.6, suggesting that PrOs4Sb12 is a strong-coupling superconductor with two point nodes on the Fermi surface. We also confirm the double transitions at 1.75 and 1.85 K seen in other measurements.  相似文献   

15.
Pulsed-beam Fourier transform microwave spectroscopy was used to observe and assign the rotational spectra of the argon-ketene van der Waals complex. Tunneling of the hydrogen or deuterium atoms splits the a- and b-type rotational transitions of H(2)CCO-Ar, H(2)(13)CCO-Ar, H(2)C(13)CO-Ar, and D(2)CCO-Ar into two states. This internal motion appears to be quenched for HDCCO-Ar where only one state is observed. The spectra of all isotopomers were satisfactorily fit to a Watson asymmetric top Hamiltonian which gave A=10 447.9248(10) MHz, B=1918.0138(16) MHz, C=1606.7642(15) MHz, Delta(J)=16.0856(70) kHz, Delta(JK)=274.779(64) kHz, Delta(K)=-152.24(23) kHz, delta(J)=2.5313(18) kHz, delta(K)=209.85(82) kHz, and h(K)=1.562(64) kHz for the A(1) state of H(2)CCO-Ar. Electric dipole moment measurements determined &mgr;(a)=0.417(10)x10(-30) C m [0.125(3) D] and &mgr;(b)=4.566(7)x10(-30) C m [1.369(2) D] along the a and b principal axes of the A(1) state of the normal isotopomer. A least squares fit of principal moments of inertia, I(a) and I(c), of H(2)CCO-Ar, H(2)(13)CCO-Ar, and H(2)C(13)CO-Ar for the A(1) states give the argon-ketene center of mass separation, R(cm)=3.5868(3) ?, and the angle between the line connecting argon with the center of mass of ketene and the C=C=O axis, θ(cm)=96.4 degrees (2). The spectral data are consistent with a planar geometry with the argon atom tilted toward the carbonyl carbon of ketene by 6.4 degrees from a T-shaped configuration. Copyright 2001 Academic Press.  相似文献   

16.
The temperature dependence of the anisotropy parameter of the upper critical field \(\gamma _{H_{c2} } (T) = H_{c2}^\parallel (T)/H_{c2}^ \bot (T)\) is calculated using the two-band Ginzburg-Landau theory for layered superconductors. It is shown that the anisotropy parameter γ(T) increases with decreasing temperature. The results of the calculations are in agreement with experimental data for single crystals of MgB2 and with other calculations.  相似文献   

17.
We used a torsion pendulum containing approximately 9 x 10(22) polarized electrons to search for CP-violating interactions between the pendulum's electrons and unpolarized matter in the laboratory's surroundings or the Sun, and to test for preferred-frame effects that would precess the electrons about a direction fixed in inertial space. We find, /g(P)(e)g(S)(N)//(Planck's constant x c) < 1.7 x 10(-36), and /g(A)(e)g(V)(N)//(Planck's constant x c) < 4.8 x 10(-56) for lambda > 1 AU. Our preferred-frame constraints, interpreted in the Kostelecky framework, set an upper limit on the parameter /b(e)/ 相似文献   

18.
We report the first direct observation of the oxygen-isotope ((16)O/(18)O) effect on the in-plane penetration depth lambda(ab) in a nearly optimally doped YBa(2)Cu(3)O(7-delta) film using the novel low-energy muon-spin rotation technique. Spin-polarized low-energy muons are implanted in the film at a known depth z beneath the surface and process in the local magnetic field B(z). This feature allows us to measure directly the profile B(z) of the magnetic field inside the superconducting film in the Meissner state and to make a straightforward determination of lambda(ab). A substantial isotope shift Delta lambda(ab)/lambda(ab)=2.8(1.0)% at 4 K is observed, implying that the in-plane effective supercarrier mass m*(ab) is oxygen-isotope dependent with Delta m*(ab)/m*(ab)=5.5(2.0)%. These results are in good agreement with magnetization measurements on powder samples.  相似文献   

19.
Based on experiments and 3D simulations, we show that a soft elastic film during adhesion and debonding from a rigid flat surface undergoes morphological transitions to pillars, labyrinths, and cavities, all of which have the same lateral pattern length scale, lambda close to lambda/H approximately 3 for thick films, H > 1 microm . The linear stability analysis and experiments show a new thin film regime where lambda/H approximately equal to 3 + 2pi(lambda/3 muH)1/4 (gamma is surface tension, mu is shear modulus) because of a significant surface energy penalty (for example, lambda/H approximately equal to 6 for H = 200 nm; mu = 1 MPa).  相似文献   

20.
We argue that there exists a simple relation between the quark and lepton mixings, which supports the idea of grand unification and probes the underlying robust bimaximal fermion mixing structure of still unknown flavor physics. In this framework the quark mixing matrix is a parameter matrix describing the deviation of neutrino mixing from exactly bimaximal, predicting theta(sol)+theta(C)=pi/4, where theta(C) is the Cabibbo angle, theta(atm)+theta(CKM)(23)=pi/4 and theta(MNS)(13) approximately theta(CKM)(13) approximately O(lambda(3)), in perfect agreement with experimental data. Both non-Abelian and Abelian flavor symmetries are needed for such a prediction to be realistic. An example flavor model capable of explaining this flavor mixing pattern and inducing the measured quark and lepton masses is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号