首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Faraday surface instability measurements of the critical acceleration, a(c), and wave number, k(c), for standing surface waves on a tetracosanol (C24H50) melt exhibit abrupt changes at T(s)=54 degrees C, approximately 4 degrees C above the bulk freezing temperature. The measured variations of a(c) and k(c) vs temperature and driving frequency are accounted for quantitatively by a hydrodynamic model, revealing a change from a free-slip surface flow, generic for a free liquid surface (T>T(s)), to a surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall (T相似文献   

2.
We discovered stripe patterns of trimerization-ferroelectric domains in hexagonal REMnO(3) (RE=Ho,···,Lu) crystals (grown below ferroelectric transition temperatures (T(c)), reaching up to 1435 °C), in contrast with the vortex patterns in YMnO(3). These stripe patterns roughen with the appearance of numerous loop domains through thermal annealing just below T(c), but the stripe domain patterns turn to vortex-antivortex domain patterns through a freezing process when crystals cross T(c) even though the phase transition appears to not be Kosterlitz-Thouless-type. The experimental systematics are compared with the results of our six-state clock model simulation and also the Kibble-Zurek mechanism for trapped topological defects.  相似文献   

3.
The polarization clusters existing in both the ferroelectric and the paraelectric phase of BaTiO3 are directly observed and characterized for the first time by a picosecond soft x-ray laser speckle technique. These dynamic clusters appear continuously across the Curie temperature T(c). The clusters' distance increases approximately linearly with temperature, while their mean size does not change significantly. The polarization exhibits a maximum at a temperature about 5 degrees C above T(c). The clusters' short-range correlation strength diverges as (T-T(c))(-0.41+/-0.02) as temperature decreases toward T(c).  相似文献   

4.
A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.  相似文献   

5.
Superlattices of organic monolayer-stabilized silver nanocrystals exhibit structural integrity at temperatures well above the melting point of the hydrocarbon capping ligands (i.e., the C (8), C (12), and C (16) alkanethiols used in this study). Temperature-dependent small angle x-ray scattering reveals that topological disordering occurs with spatially correlated domains of characteristic length xi that grow with increasing temperature until xi diverges at a critical temperature T(c), as xi approximately xi(0)(1-T/T(c))(-0.67). A power law analysis of the scattering intensity with wave vector indicates that interactions between membranes due to thermal undulations control the topology below T(c).  相似文献   

6.
Magnetic domain phases of ultrathin Fe/Ni/Cu(001) are studied using photoemission electron microscopy at the spin reorientation transition (SRT). We observe a new magnetic phase of bubble domains within a narrow SRT region after applying a nearly in-plane magnetic field pulse to the sample. By applying the magnetic field pulse along different directions, we find that the bubble domain phase exists only if the magnetic field direction is less than approximately 10 degrees relative to the sample surface. A temperature dependent measurement shows that the bubble domain phase becomes unstable above 370 K.  相似文献   

7.
3 thin films have been prepared by metalorganic chemical vapor deposition under reduced pressure. The formation of ferroelectric domains in films grown on SrTiO3 and LaAlO3 substrates was investigated by synchrotron radiation and Rutherford backscattering spectroscopy. Single-domain (3000-Å thick) and multi-domain (4500-Å thick) PbTiO3 films were produced on SrTiO3. For multi-domain PbTiO3 film, the c-domain presented epitaxial structure with its c-axis perpendicular to the substrate surface, while a-domains aligned four-fold symmetrically with c-domains by 2.79° off the c-axis of c-domains. In the film, the measured lattice constants (a, b and c) of the a- and c-domains were different from each other, indicating that the films suffered a modulated strain during domain formation. In contrast, both the a and c domains of films on LaAlO3 were alternatively aligned on substrate with the a-axis of the a-domain and the c-axis of c-domains perpendicular to the substrate surface. Two-dimensional distribution of these domains is proposed and the formation of these kinds of domains is discussed. The surface morphology and phase transition process of single and multi domain PbTiO3 film on SrTiO3 were studied by atomic force microscope (AFM) and high temperature X-ray diffraction, respectively. Received: 15 August 1996/Accepted: 21 January 1997  相似文献   

8.
Body-centered-cubic iron develops an elastic instability, driven by spin fluctuations, near the alpha-gamma phase transition temperature T(c) = 912 degrees C that is associated with the dramatic reduction of the shear stiffness constant c' (c(11)-c(12))/2 near T(c). This reduction of c' has a profound effect on the temperature dependence of the anisotropic elastic self-energies of dislocations in iron. It also affects the relative stability of the a[100] and a/2[111] prismatic edge dislocation loops formed during irradiation. The difference between the anisotropic elastic free energies provides the fundamental explanation for the observed dominant occurrence of the a[100], as opposed to the a/2[111], Burgers vector configurations of prismatic dislocation loops in iron and iron-based alloys at high temperatures.  相似文献   

9.
Angle-resolved ultraviolet photoemission spectroscopy (ARUPS) from high-T(c) superconductors shows an effective-mass renormalization and intense quasiparticle peaks close to the Fermi energy E(F), which change dramatically with temperature as T(c) is crossed. They are attributed to many-body effects, but their precise nature has been controversial until now. We find very similar spectral fingerprints, even with a similar temperature dependence albeit with much higher critical temperature, in a quasi-one-dimensional Br/Pt surface compound. The striking parallels support an interpretation based on spin-charge separation and are consistent with a dimensional crossover taking place at T(c).  相似文献   

10.
11.
We demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e., approximately 45K higher than T(c)bulk, and that the tetragonal domains formed below T(c) are randomly oriented.  相似文献   

12.
Dynamic processes of molecular assembly on a metal surface were examined using scanning tunneling microscopy (STM). Molecules of a porphyrin derivative were deposited on a Cu(1 1 1) surface and were found to be highly mobile at room temperature. The real-time STM observation enabled visualization of molecular activity such as surface diffusion, domain formation and phase transition. The high mobility of the molecules caused build-up and break-down of molecular domains. Metastability of the molecular assembly caused various domain formations with different molecular alignments, including square and hexagonal motifs. A phase transition from a hexagonal to a square domain structure was successfully observed by sequential STM imaging.  相似文献   

13.
Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase correlations are important up to temperature T(phi). Above T(phi), the pseudogap region is determined only by amplitudes, and phases are uncorrelated. Our calculations show excellent quantitative agreement with specific heat and magnetic susceptibility experiments on cuprates. We find that the mean field temperature T0 has a similar doping dependence as the pseudogap temperature T(*), whereas the pseudogap energy scale is given by the average amplitude above T(c).  相似文献   

14.
Accurate measurement of tissue relaxation characteristics is dependent on many factors, including field strength and temperature. The purpose of this study was to evaluate the relationship between sample temperature, viscosity and proton spin-lattice relaxation time (T1) and spin-spin relaxation time (T2). A review of two basic models of relaxation the simple molecular motion model and the fast exchange two state model is given with reference to their thermal dependencies. The temperature dependence for both T1 and T2 was studied on a 0.15 Tesla whole body magnetic resonance imager. Thirteen samples comprising both simple and complex materials were investigated by using a standard spin-echo (SE) technique and a modified Carr-Purcell-Meiboom-Gill (CPMG) multi-echo sequence. A simple linear relationship between T1 and temperature was observed for all samples over the range of 20 degrees C to 50 degrees C. There is an inverse relationship between viscosity and T1 and T2. A quantity called the temperature dependence coefficient (TDC) is introduced and defined as the percent rate of change of the proton relaxation time referenced to a specific temperature. The large TDC found for T1 values, e.g. 2.37%/degrees C for CuSO4 solutions and 3.59%/degrees C for light vegetable oils at 22 degrees C, indicates that a temperature correction should be made when comparing in-vivo and in-vitro T1 times. The T2 temperature dependence is relatively small.  相似文献   

15.
Photoemission electron microscopy performed on a well-prepared surface of BaTiO3 reveals the persistence of surface domains at temperatures well above the bulk Curie temperature. Their patterns follow the ferroelectric domain structure observed at 300 K. The contrast between formerly outward polarized domains and in-plane polarized domains is preserved across the transition, while the contrast of inward polarized domains changes sign. The work functions of different possible structures are compared by first-principles calculations. The domain contrast in photoemission above the bulk Curie temperature is associated with a remaining tetragonal distortion of the topmost unit cells which is stabilized by an ionic surface relaxation.  相似文献   

16.
We have measured the transport properties of a series of underdoped YBa(2)Cu(3)O(7-delta) nanowires fabricated with widths of 100-250 nm. We observe large telegraphlike fluctuations in the resistance between the pseudogap temperature T* and the superconducting transition temperature T(c), consistent with the formation and dynamics of a domain structure. We also find anomalous hysteretic steps in the current-voltage characteristics well below T(c).  相似文献   

17.
LaAlO3 crystals have been investigated with differential scanning calorimetry (DSC), high-precision X-ray powder diffraction (XRD) and scanning force microscopy (SFM). The DSC measurements show the second-order phase transition of LaAlO3 at 544°C, where LaAlO3 changes its symmetry from the cubic Pm3m high-temperature phase to the pseudocubic rhombohedral low-temperature phase. This paraelastic to improper ferroelastic phase transition causes twinning in the {100} and {110} planes of the pseudocubic lattice. The twin angles between the surface {100}pseudocubic planes of twin domains were measured by SFM on the surface of a macroscopic (100)cubic cut crystal plate. The misorientation angle ω100 between {100} twins is 0.195(8)°, while {110} twinning gives an angle of ω110=0.276(7)°. The two twin kink angles correspond to a rhombohedral angle of the pseudocubic cell of the phase as 1=90.0973(40)° and 2=90.0975(30)°, respectively. The XRD result for this rhombohedral angle is =90.096(1)°. The orientation of the misfit steps formed during annealing after mechanical surface polishing depends on the domain orientation and pattern during polishing. Any heating close to or above Tc changes the domain pattern. Footprints of previous domain patterns can thus be found on the surface in the form of surface corrugation and changes in the shape and orientation of misfit steps.  相似文献   

18.
Local conduction at domains and domain walls is investigated in BiFeO(3) thin films containing mostly 71° domain walls. Measurements at room temperature reveal conduction through 71° domain walls. Conduction through domains could also be observed at high enough temperatures. It is found that, despite the lower conductivity of the domains, both are governed by the same mechanisms: in the low voltage regime, electrons trapped at defect states are temperature activated but the current is limited by the ferroelectric surface charges; in the large voltage regime, Schottky emission takes place and the role of oxygen vacancies is that of selectively increasing the Fermi energy at the walls and locally reducing the Schottky barrier. This understanding provides the key to engineering conduction paths in BiFeO(3).  相似文献   

19.
In this work, investigations of the magnetic microstructure of anisotropic sintered SmCo5 permanent magnets with high coercivity have been made using the colloid-scanning electron microscopy (SEM) technique and magnetic force microscopy (MFM). The magnets were produced by powder metallurgy (sintering) process and consisted of oriented grains with an average size of about 20 μm. They were studied in the thermally demagnetized state. Owing to the application of digital image recording, enhancement and analysis, high-quality images of the magnetic microstructure were obtained and analyzed not only qualitatively but also quantitatively. Improvements over previous results were achieved. The grains show the presence of magnetic domains, as expected. At the surface perpendicular to the alignment axis, the coarse domain structure in the form of a maze pattern with surface reverse spikes is observed. The main (maze) domains had typical widths 3–5 μm. The reverse spike domains were imaged as circles typically 1–2 μm in diameter or as elongated regions up to about 6 μm in length. Interestingly, in addition to the coarse maze domains and reverse spikes near the surface, a fine surface domain structure is revealed with MFM. The fine scale domains are found to be magnetized perpendicular to the surface and their occurrence is attributed to further reduction of the magnetostatic energy at the cost of a larger domain wall energy. On the surface parallel to the alignment axis, the main domains within individual grains are imaged as stripe domains with domain walls running approximately parallel to the alignment axis, while reverse spike domains are displayed in the form of triangular domains and occur near some grain boundaries, pores or precipitations. The magnetic alignment of grains was found to be good, but certainly not perfect. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) observations indicated the existence of significant magnetostatic coupling between neighboring grains. The main and surface domain widths were determined by digital means using the stereologic method of Bodenberger and Hubert. Moreover, the domain wall energy and other intrinsic parameters for the studied magnets were determined.  相似文献   

20.
Equilibrium properties of the non-uniform diamagnetic phase in normal metals (Condon domains) are studied theoretically in the framework of Lifschitz–Kosevich–Shoenberg (LKS) approximation. It is found that characteristic diamagnetic lengths of the phase, e.g. a period of the domain structure and width of interface boundary between domains, as well as specific surface energy of domain wall, are strongly affected by electron correlations and depend on temperature, magnetic field and purity of the sample. The developed theory is in a good agreement with existent experiment data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号