首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that explosive synchronization transitions can be observed in networks of phase oscillators [Gómez-Garden es J,Gómez S,Arenas A and Moreno Y 2011 Phys.Rev.Lett.106 128701] and chaotic oscillators [Leyva I,Sevilla-Escoboza R,BuldúJ M,Sendin a-Nadal I,Gómez-Garden es J,Arenas A,Moreno Y,Gómez S,Jaimes-Reátegui R and Boccaletti S 2012 Phys.Rev.Lett.108 168702].Here,we study the effect of different chaotic dynamics on the synchronization transitions in small world networks and scale free networks.The continuous transition is discovered for Rssler systems in both of the above complex networks.However,explosive transitions take place for the coupled Lorenz systems,and the main reason is the abrupt change of dynamics before achieving complete synchronization.Our results show that the explosive synchronization transitions are accompanied by the change of system dynamics.  相似文献   

2.
Phase synchronization of chaotic oscillators   总被引:3,自引:0,他引:3  
  相似文献   

3.
Whether common noise can induce complete synchronization in chaotic systems has been a topic of great relevance and long-standing controversy. We first clarify the mechanism of this phenomenon and show that the existence of a significant contraction region, where nearby trajectories converge, plays a decisive role. Second, we demonstrate that, more generally, common noise can induce phase synchronization in nonidentical chaotic systems. Such a noise-induced synchronization and synchronization transitions are of special significance for understanding neuron encoding in neurobiology.  相似文献   

4.
The effects of noise on phase synchronization (PS) of coupled chaotic oscillators are explored. In contrast to coupled periodic oscillators, noise is found to enhance phase synchronization significantly below the threshold of PS. This constructive role of noise has been verified experimentally with chaotic electrochemical oscillators of the electrodissolution of Ni in sulfuric acid solution.  相似文献   

5.
We report a method of engineering generalized synchronization (GS) in chaotic oscillators using an open-plus-closed-loop coupling strategy. The coupling is defined in terms of a transformation matrix that maps a chaotic driver onto a response oscillator where the elements of the matrix can be arbitrarily chosen, and thereby allows a precise control of the GS state. We elaborate the scheme with several examples of transformation matrices. The elements of the transformation matrix are chosen as constants, time varying function, state variables of the driver, and state variables of another chaotic oscillator. Numerical results of GS in mismatched Ro?ssler oscillators as well as nonidentical oscillators such as Ro?ssler and Chen oscillators are presented.  相似文献   

6.
双频驱动混沌系统的相同步和广义同步   总被引:1,自引:0,他引:1       下载免费PDF全文
吴玉喜  黄霞  高建  郑志刚 《物理学报》2007,56(7):3803-3812
研究了双频混沌信号驱动的混沌振子的广义同步和相同步问题.发现了反偏向的相同步和正偏向的广义同步,即响应振子可以优先与驱动强度弱的混沌信号达到相同步,而广义同步则先在驱动强的信号和响应振子间建立起来.对这些行为产生的动力学机理进行了详细地分析. 关键词: 相同步 广义同步 条件熵 平均频率  相似文献   

7.
高心  虞厥邦 《中国物理》2005,14(8):1522-1525
近年来对分数阶系统的动力学研究得到了较为广泛的关注。本文研究了基于主-从耦合同步法的同步技术并实现了两个耦合的分数阶振荡器的混沌同步。仿真结果表明:在适当的耦合强度的调节下,该方法可实现两个耦合分数阶混沌振荡器的准确同步,且分数阶混沌振荡器的同步率明显慢于整数阶混沌振荡器的同步率;而耦合分数阶混沌振荡器在实现同步的过程中,随着阶数的提高,同步误差曲线变得平滑,这表明,系统阶数的提高改善了耦合混沌振荡器实现同步的平稳性。  相似文献   

8.
Lag synchronization is a recently discovered theoretical phenomenon where the dynamical variables of two coupled, nonidentical chaotic oscillators are synchronized with a time delay relative to each other. We investigate experimentally and numerically to what extent lag synchronization can be observed in physical systems where noise is inevitable. Our measurements and numerical computation suggest that lag synchronization is typically destroyed when the noise level is comparable to the amount of average system mismatch. At small noise levels, lag synchronization occurs in an intermittent fashion.  相似文献   

9.
The problem of finite-time synchronization of fractional-order simplest two-component chaotic oscillators operating at high frequency and application to digital cryptography is addressed. After the investigation of numerical chaotic behavior in the system, an adaptive feedback controller is designed to achieve the finite-time synchronization of two oscillators, based on the Lyapunov function. This controller could find application in many other fractional-order chaotic circuits. Applying synchronized fractional-order systems in digital cryptography, a well secured key system is obtained. Numerical simulations are given to illustrate and verify the analytic results.  相似文献   

10.
We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation.  相似文献   

11.
耦合混沌振子系统完全同步的动力学行为   总被引:3,自引:0,他引:3       下载免费PDF全文
以耦合Duffing振子为对象,研究了混沌系统进入完全同步态时的一些动力学行为. 在对称耦合情况下,随着耦合系数的变化系统达到各个混沌振子的相轨道完全相同的同步态——完全同步态. 通过计算Lyapunov指数表明,此时系统的前两个横向Lyapunov指数相等,同时系统之间的时间关联表现出明显的规律性. 关键词: Duffing振子 混沌同步 Lyapunov指数  相似文献   

12.
We numerically investigate the dynamics of a closed chain of unidirectionally coupled oscillators in a regime of homoclinic chaos. The emerging synchronization regimes show analogies with the experimental behavior of a single chaotic laser subjected to a delayed feedback.  相似文献   

13.
The dynamical behavior of a ring of six diffusively coupled R?ssler circuits, with different coupling schemes, is experimentally and numerically investigated using the coupling strength as a control parameter. The ring shows partial synchronization and all the five patterns predicted analyzing the symmetries of the ring are obtained experimentally. To compare with the experiment, the ring has been integrated numerically and the results are in good qualitative agreement with the experimental ones. The results are analyzed through the graphs generated plotting the y variable of the ith circuit versus the variable y of the jth circuit. As an auxiliary tool to identify numerically the behavior of the oscillators, the three largest Lyapunov exponents of the ring are obtained.  相似文献   

14.
In this paper, phase synchronization and the frequency of two synchronized van der Pol oscillators with delay coupling are studied. The dynamics of such a system are obtained using the describing function method, and the necessary conditions for phase synchronization are also achieved. Finding the vicinity of the synchronization frequency is the major advantage of the describing function method over other traditional methods. The equations obtained based on this method justify the phenomenon of the synchronization of coupled oscillators on a frequency either higher, between, or lower than the highest, in between, or lowest natural frequency of the aggregate oscillators. Several numerical examples simulate the different cases versus the various synchronization frequency delays.  相似文献   

15.
We identify a novel phenomenon in distinct (namely non-identical) coupled chaotic systems, which we term dynamical hysteresis. This behavior, which appears to be universal, is defined in terms of the system dynamics (quantified for example through the Lyapunov exponents), and arises from the presence of at least two coexisting stable attractors over a finite range of coupling, with a change of stability outside this range. Further characterization via mutual synchronization indices reveals that one attractor corresponds to spatially synchronized oscillators, while the other corresponds to desynchronized oscillators. Dynamical hysteresis may thus help to understand critical aspects of the dynamical behavior of complex biological systems, e.g. seizures in the epileptic brain can be viewed as transitions between different dynamical phases caused by time dependence in the brain’s internal coupling.  相似文献   

16.
This work investigates function projective synchronization of two-cell Quantum-CNN chaotic oscillators using adaptive method. Quantum-CNN oscillators produce nano scale chaotic oscillations under certain conditions. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.  相似文献   

17.
We present and experimentally demonstrate a technique for achieving and maintaining a global state of identical synchrony of an arbitrary network of chaotic oscillators even when the coupling strengths are unknown and time-varying. At each node an adaptive synchronization algorithm dynamically estimates the current strength of the net coupling signal to that node. We experimentally demonstrate this scheme in a network of three bidirectionally coupled chaotic optoelectronic feedback loops and we present numerical simulations showing its application in larger networks. The stability of the synchronous state for arbitrary coupling topologies is analyzed via a master stability function approach.  相似文献   

18.
《中国物理 B》2021,30(10):100503-100503
We investigate the synchronization problem between identical chaotic systems only when necessary measurement(output) and actuation(input) are needed to be implemented by the adaptive controllers. A sufficient condition is derived based on the Lyapunov stability theory and Schur complementary lemma. Moreover, the theoretic result is applied to the Rikitake system and the hyperchaotic Liu system to show its effectiveness and correctness. Numerical simulations are presented to verify the results.  相似文献   

19.
We propose a general formulation of coupling for engineering synchronization in chaotic oscillators for unidirectional as well as bidirectional mode. In the synchronization regimes, it is possible to amplify or to attenuate a chaotic attractor with respect to other chaotic attractors. Numerical examples are presented for a Lorenz system, Ro?ssler oscillator, and a Sprott system. We physically realized the controller based coupling design in electronic circuits to verify the theory. We extended the theory to a network of coupled oscillators and provided a numerical example with four Sprott oscillators.  相似文献   

20.
We investigate the effects that network topology, natural frequency distribution, and system size have on the path to global synchronization as the overall coupling strength between oscillators is increased in a Kuramoto network. In particular, we study the scenario recently found by Go?mez-Garden?es et al. [Phys. Rev. E 73, 056124 (2006)] in which macroscopic global synchronization emerges through a process whereby many small synchronized clusters form, grow, and merge, eventually leading to a macroscopic giant synchronized component. Our main result is that this scenario is robust to an increase in the number of oscillators or a change in the distribution function of the oscillators' natural frequencies, but becomes less prominent as the number of links per oscillator increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号