首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.  相似文献   

2.
Along the lines of Blonder, Tinkham and Klapwijk, we investigate the charge transport through ferromagnet/two-dimensional electronic gas/d-wave superconductor (F/2DEG/S) junctions in the presence of Rashba spin-orbit (SO) coupling and focus our attention on the interplay between spin polarization and spin precession. At zero spin polarization, the spin-mixing scattering resulted from Rashba SO coupling decreases the zero-bias conductance peak. Under spin polarization, spin precession introduces novel Andreev reflection, which competes with the effect of spin-mixing scattering. If the F layer is a half metal, the later effect is overwhelmed by that of novel Andreev reflection. As a result, the zero-bias conductance dip caused by spin polarization is enhanced, and at strong Rashba SO coupling, a split zero-bias peak is found in the gap. In an intermediate region where the two effects are comparable with each other, the zero-bias conductance shows a reentrant behavior as a function of Rashba SO coupling.  相似文献   

3.
It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-Tc systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green’s functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green’s functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.  相似文献   

4.
Tunneling conductance in clean ferromagnet/ ferromagnet/d-wave superconductor (F/F/d-wave S) double tunnel junctions is studied by use of four-component Bogoliubov-de Gennes equations. The novel Andreev reflection appears due to noncollinear magnetizations, in which the incident electron and the Andreev-reflected hole come from the same spin subband, resulting in spin-triplet pairing states near the F/S interface. In the highly polarized Fs case, the conductance within the energy gap exhibits a conversion from a zero-bias dip in the parallel magnetizations to a spilt zero-bias peak in the perpendicular magnetizations.  相似文献   

5.
肖贤波  李小毛  陈宇光 《中国物理 B》2009,18(12):5462-5467
We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin--orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can be understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide.  相似文献   

6.
The intrinsic spin Hall effect on spin accumulation and electric conductance in a diffusive regime of a 2D electron gas has been studied for a 2D strip of a finite width. It is shown that the spin polarization near the flanks of the strip, as well as the electric current in the longitudinal direction, exhibit damped oscillations as a function of the width and strength of the Dresselhaus spin-orbit interaction. Cubic terms of this interaction are crucial for spin accumulation near the edges. As expected, no effect on the spin accumulation and electric conductance have been found in case of Rashba spin-orbit interaction.  相似文献   

7.
We have measured the differential conductance of individual multiwall carbon nanotubes. Coulomb blockade and energy level quantization are observed. The electron levels are nearly fourfold degenerate (including spin) and their evolution in magnetic field (Zeeman splitting) agrees with a g factor of 2. In zero magnetic field the sequential filling of states evolves with spin S according to S = 0-->1/2-->0.... A Kondo enhancement of the conductance is observed when the number of electrons on the tube is odd.  相似文献   

8.
The spin thermoelectric effects are studied in a Rashba double quantum dot (QD) attached to ferromagnetic leads with noncollinear magnetic moments. The spin conductance G(s), spin thermopower S(s), electron thermal conductance κ(el) and spin thermoelectric figure of merit Z(s)T are calculated by using Green's function method. We find that the magnitude of the spin figure of merit can be remarkably enhanced by the coexistence of the Rashba spin-orbit interaction in the QDs and the leads' spin polarization, and can reach even as high as 3 by optimizing the parameters of the structure. The angle between the leads' magnetic moments can act as a powerful means to manipulate the properties of the spin figure of merit.  相似文献   

9.
In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper pairing states: spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP), and spin triplet equal spin pairing (ESP) while including Fermiwave mismatch (FWM) and effective mass mismatch (EMM) in two sides of the nano-junction. We find that the conductance shows clearly different behaviors all depending on the symmetries of cooper pairing in a mannerthat the conductance spectra shows a gap-like structure, two interior dipsstructure and zero bias peak for SWP, OSP, and ESP, respectively. Also, theeffective FS gap (δeff) is a linear and decreasing function of exchange field. The slope of (δeff) versus exchange field for OSP is twice the SWP. Thus, we can determine the spin polarization of N/FS nano-junction based on the dependence of (δeff) to exchange field.  相似文献   

10.
We investigate theoretically the spin-dependent electron transport in a Rashba quantum wire with rough edges. The charge and spin conductances are calculated as function of the electron energy and wire length by adopting the spin-resolved lattice Green function method. For a single disordered Rashba wire, it is found that the charge conductance quantization is destroyed by the edge disorder. However, a nonzero spin conductance can be generated and its amplitude can be manipulated by varying the wire length, which is attributed to the broken structure symmetries and the spin-dependent quantum interference induced by the rough boundaries. For a large ensemble of disordered Rashba wires, the average charge conductance decreases monotonically, however, the average spin conductance increases to a maximum value and then decreases, with increasing wire length. Further study shows that the influence of the rough edges on the charge and spin conductances can be eliminated by applying a perpendicular magnetic field to the wire. In addition, a very large magnitude of the spin conductance can be achieved when the electron energy lies between the two thresholds of each pair of subbands. These findings may not only benefit to further apprehend the transport properties of the Rashba low-dimensional systems but also provide some theoretical instructions to the application of spintronics devices.  相似文献   

11.
We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band.  相似文献   

12.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

13.
《Physics letters. A》2019,383(23):2813-2820
Spin dependent transport in one-dimensional four-terminal rings (FTRs) is investigated in the presence of the Rashba spin-orbit coupling (RSOC). In the absence of the RSOC, the conductances as a function of the electron wave vector show resonant behavior for symmetrical configurations. For asymmetrical configurations, the conductances show peculiar zero-conductance resonances, and two kinds of conductance zeros have been found. In the presence of the RSOC, the original conductance zeros disappear as new conductance zeros are generated. Moreover, two kinds of symmetry relations have been found in the conductances, the spin dependent conductances and the spin polarizations. For the FTRs with axial or central symmetry, the phase-locking effect has been found in terminal 2, where there is no spin polarization. Under a weak magnetic field, the Zeeman term is treated by a perturbation, and it is found that the Zeeman effect is obvious for weak RSOC.  相似文献   

14.
In this paper, conductance of spin and electron in graphene-based ferromagnet—superconductor (FS) and parallel and antiparallel ferromagnet–superconductor–ferromagnet (FSF) junctions are studied. Using the Dirac–Bogoliubov–de Gennes equations, Andreev and normal reflections are obtained and then using these coefficients, conductance of spin and electrons are calculated at the FS interface(s) analytically. As a result, both the energy dependence of spin and charge differential conductances are investigated and a comparison between electron and spin transport is done in this paper. Effect of exchange energy of ferromagnet h on conductances is studied too.  相似文献   

15.
We study the effect of Coulomb interactions on the conductance of a single-mode quantum wire connecting two bulk leads. When the density of electrons in the wire is very low, they arrange in a finite-length Wigner crystal. In this regime the electron spins form an antiferromagnetic Heisenberg chain with an exponentially small coupling J. An electric current in the wire perturbs the spin chain and gives rise to a temperature-dependent contribution of the spin subsystem to the resistance. At low temperature TJ the spin effect reduces the conductance to e2/h.  相似文献   

16.
We consider Andreev reflection in a two dimensional junction between a normal metal and a heavy fermion superconductor in the Fulde–Ferrell (FF) type of the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state. We assume s-wave symmetry of the superconducting gap. The parameters of the superconductor: the gap magnitude, the chemical potential, and the Cooper pair center-of-mass-momentum Q, are all determined self-consistently within a mean-field (BCS) scheme. The Cooper pair momentum Q is chosen as perpendicular to the junction interface. We calculate the junction conductance for a series of barrier strengths. In the case of incoming electron with spin σ = ↑ only for magnetic fields close to the upper critical field Hc2, we obtain the so-called Andreev window, i.e. the energy interval in which the reflection probability is maximal, which in turn is indicated by a peak in the conductance. The last result differs with other non-self-consistent calculations existing in the literature.  相似文献   

17.
We numerically investigate magnon-mediated spin transport through nonmagnetic metal/ferromagnetic insulator (NM/FI) heterostructures in the presence of Anderson disorder, and discover universal behaviors of the spin conductance in both one-dimensional (1D) and 2D systems. In the localized regime, the variance of logarithmic spin conductance σ2(lnGT) shows a universal linear scaling with its average ⟨lnGT⟩, independent of Fermi energy, temperature, and system size in both 1D and 2D cases. In 2D, the competition between disorder-enhanced density of states at the NM/FI interface and disorder-suppressed spin transport leads to a non-monotonic dependence of average spin conductance on the disorder strength. As a result, in the metallic regime, average spin conductance is enhanced by disorder, and a new linear scaling between spin conductance fluctuation rms(GT) and average spin conductance GT is revealed which is universal at large system width. These universal scaling behaviors suggest that spin transport mediated by magnon in disordered 2D NM/FI systems belongs to a new universality class, different from that of charge conductance in 2D normal metal systems.  相似文献   

18.
杨军  章曦  苗仁德 《物理学报》2014,63(21):217202-217202
考虑自旋场效应晶体管中Rashba自旋轨道相互作用和自旋输运量子相干性,研究了势垒强度对自旋场效应晶体管的自旋相关量子输运的影响. 研究发现,势垒强度较低时,隧道结电导随Rashba自旋轨道相互作用强度的变化呈现明显的振荡现象,势垒强度较高时,电导表现出明显的势垒相关“电导开关”现象. 当势垒强度逐渐增强时,平行结构电导呈现出单调下降趋势,而反平行结构电导产生波动,这种波动导致该隧道磁阻也随势垒强度的变化表现出振荡现象,且在合适的准一维电子气厚度情况下隧道磁阻值可以产生正负反转,这个效应将会在基于自旋的电子器件信息的存储上获得应用. 关键词: 自旋场效应管 开关效应 量子相干 隧道磁阻  相似文献   

19.
肖贤波  李小毛  陈宇光 《物理学报》2009,58(11):7909-7913
理论上研究了含stubs的Rashba自旋轨道耦合(spin-orbit coupling, SOC)量子波导系统的自旋极化输运性质. 利用晶格格林函数方法,发现由于stubs和SOC产生的势阱使系统中出现束缚态,这些束缚态与传播态之间相互干涉导致电导中出现Fano共振结构,同时在对应的自旋极化率中也出现Fano共振或反共振结构. 此外,由于系统结构的突变使电子被反向散射和量子干涉效应,电导中出现一系列的共振峰. 但是,当系统加上外磁场后,所有这些效应都被抑制, 系统重新出现量子化电导, 同时自旋电导也出 关键词: 量子波导 自旋极化输运 自旋轨道耦合  相似文献   

20.
The spin Hall transport properties in a two-dimensional electron system with both Rashba spin-orbit coupling (SOC) and magnetic impurities are investigated. Electrons are scattered by impurities through an exchange interaction that leads to spin flip-flop processes and so changes the spin Hall effect induced by the SOC. The spin Hall conductance is calculated in a 4-terminal system using the Landauer-Buttiker formula and Green function approach. In comparison with the simulation results on nonmagnetic impurities doping systems, our results reveal that the spin Hall conductance is still nonzero in a system with a large density of magnetic impurities and a finite intensity of the exchange interaction between the electrons and impurities, and its sign may be altered when the doping density and interaction strength are large enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号