首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kondo effect is investigated in a many-electron quantum ring as a function of the magnetic field. For fields applied perpendicular to the plane of the ring a modulation of the Kondo effect with the Aharonov-Bohm period is observed. This effect is discussed in terms of the energy spectrum of the ring and the parametrically changing tunnel coupling. In addition, we use gate voltages to modify the ground-state spin of the ring. The observed splitting of the Kondo-related zero-bias anomaly in this configuration is tuned with an in-plane magnetic field.  相似文献   

2.
A small quantum ring with less than ten electrons was studied by transport spectroscopy. For strong coupling to the leads a Kondo effect is observed and used to characterize the spin structure of the system in a wide range of magnetic fields. At small magnetic fields Aharonov-Bohm oscillations influenced by Coulomb interaction appear. They exhibit phase jumps by pi at the Coulomb-blockade resonances. Inside Coulomb-blockade valleys the Aharonov-Bohm oscillations can also be studied due to the finite conductance caused by the Kondo effect. Astonishingly, the maxima of the oscillations show linear shifts with increasing magnetic field and gate voltage.  相似文献   

3.
We study the Kondo screening of a single magnetic impurity inside a nonmagnetic quantum corral located on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are spatial variations of the Kondo temperature T K. Moreover, we predict that the Kondo screening is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns. Our results open new possibilities to manipulate and explore the Kondo effect by using quantum corrals.  相似文献   

4.
We report observation of the Kondo effect in the Coulomb blockade oscillations of an impurity quantum dot (IQD). This IQD is formed in the channel of a 100 nm gate length Silicon MOSFET. The quantitative analysis of the anomalous temperature and voltage dependence for the drain-source current over a series of Coulomb blockade oscillations is performed. It strongly supports the Kondo explanation for the conductance behavior at very low temperature in this standard microelectronics device. Received 13 November 2001 and Received in final form 18 February 2002  相似文献   

5.
A new mechanism of resonance Kondo tunneling via a composite quantum dot (QD) is proposed. It is shown that, owing to the hidden dynamic spin symmetry, the Kondo effect can be induced by a finite voltage eV applied to the contacts at an even number N of electrons in a QD with zero spin in the ground state. As an example, a double QD is considered in a parallel geometry with N=2, which possesses the SO(4) type symmetry characteristic of a singlet-triplet pair. In this system, the Kondo peak of conductance appears at an eV value compensating for the exchange splitting.  相似文献   

6.
We report a strong Kondo effect (Kondo temperature approximately 4 K) at high magnetic field in a selective area growth semiconductor quantum dot. The Kondo effect is ascribed to a singlet-triplet transition in the ground state of the dot. At the transition, the low-temperature conductance approaches the unitary limit. Away from the transition, for low bias voltages and temperatures, the conductance is sharply reduced. The observed behavior is compared to predictions for a two-stage Kondo effect in quantum dots coupled to single-channel leads.  相似文献   

7.
We investigate the conductance of quantum wires with a variable open quantum dot geometry, displaying an exceptionally strong Kondo effect and most of the 0.7 structure characteristics. Our results indicate that the 0.7 structure is not a manifestation of the singlet Kondo effect. However, specific similarities between our devices and many of the clean quantum wires reported in the literature suggest a weakly bound state is often present in real quantum wires.  相似文献   

8.
使用双杂质Anderson模型的哈密顿,从理论上研究了一个嵌入并联耦合双量子点介观环系统 , 当处在Kondo区时的基态性质, 并用slave-boson平均场方法求解了哈密顿.研究的结果表 明, 在这个系统中,当两个量子点处于强耦合时,两个量子点可以相干耦合成一个人造分 子,导致一个增强的Kondo效应和超强持续电流的出现.因此,在未来的纳米装置应用中,这 个系统具有潜在的应用价值. 关键词: 并联耦合双量子点 Kondo效应 超强持续电流  相似文献   

9.
We have fabricated a few-electron quantum dot that can be tuned down to zero electrons while maintaining strong coupling to the leads. Using a nearby quantum point contact as a charge sensor, we can determine the absolute number of electrons in the quantum dot. We find several sharp peaks in the differential conductance, occurring at both zero and finite source-drain bias, for the one- and two-electron quantum dot. We attribute the peaks at finite bias to a Kondo effect through excited states of the quantum dot and investigate the magnetic field dependence of these Kondo resonances.  相似文献   

10.
We study the Kondo effect in a quantum dot coupled to ferromagnetic leads and analyze its properties as a function of the spin polarization of the leads. Based on a scaling approach, we predict that for parallel alignment of the magnetizations in the leads the strong-coupling limit of the Kondo effect is reached at a finite value of the magnetic field. Using an equation of motion technique, we study nonlinear transport through the dot. For parallel alignment, the zero-bias anomaly may be split even in the absence of an external magnetic field. For antiparallel spin alignment and symmetric coupling, the peak is split only in the presence of a magnetic field, but shows a characteristic asymmetry in amplitude and position.  相似文献   

11.
12.
The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility χ_{imp} directly in future experiments.  相似文献   

13.
We investigate the effects induced by ferromagnetic contacts attached to a serial double quantum dot. Spin polarization generates effective magnetic fields and suppresses the Kondo effect in each dot. The superexchange interaction J(AFM), tuned by the interdot tunneling rate t, can be used to compensate the effective fields and restore the Kondo resonance when the contact polarizations are aligned. As a consequence, the direction of the spin conductance can be controlled and even reversed using electrostatic gates alone. Our results demonstrate a new approach for controlling spin-dependent transport in carbon nanotube double dot devices.  相似文献   

14.
Quantum spin tunneling and Kondo effect are two very different quantum phenomena that produce the same effect on quantized spins, namely, the quenching of their magnetization. However, the nature of this quenching is very different so that quantum spin tunneling and Kondo effect compete with each other. Importantly, both quantum spin tunneling and Kondo effect produce very characteristic features in the spectral function that can be measured by means of single spin scanning tunneling spectroscopy and allows to probe the crossover from one regime to the other. We model this crossover, and the resulting changes in transport, using a non-perturbative treatment of a generalized Anderson model including magnetic anisotropy that leads to quantum spin tunneling. We predict that, at zero magnetic field, integer spins can feature a split-Kondo peak driven by quantum spin tunneling.  相似文献   

15.
We study the effect of polaronic corrections arising from theelectron-longitudinal optical phonon interaction on the energyspectrum of a two-dimensional electron system with a one-dimensionalperiodic antidot array geometry created by a weak electrostaticmodulation potential, and subjected to a weak magnetic fieldmodulation as well as a uniform strong perpendicular staticmagnetic field. To incorporate the effects of electron-phononinteractions within the framework of Fröhlich polaron theory, wefirst apply a displaced-oscillator type unitary transformation todiagonalise the relevant Fröhlich Hamiltonian, and we thendetermine the parameters of this transformation together with theparameter included in the electronic trial wave function . On thebasis of this technique, it has been shown that the polaroniccorrections have non-negligible effects on the electronic spectrumof a two-dimensional electron system with a quantum antidot array,since switching such an interaction results in shifting thedegeneracy restoring points of Landau levels wherein the flatbandcondition is fulfilled, thus suppressing the Weiss oscillations.  相似文献   

16.
We consider electron transport through quantum dots with large level spacing and charging energy. At low temperature and strong coupling to the leads, quantum fluctuations and the Kondo effect become important. They show up, e.g., as zero-bias anomalies in the current–voltage characteristics. We use a recently developed diagrammatic technique as well as a new real-time renormalization-group approach to describe charge and spin fluctuations. The latter gives rise to a Kondo-assisted enhancement of the current through the dot as seen in experiments.  相似文献   

17.
When a quantum dot in the Kondo regime couples to two leads (the conduction electron reservoirs) indirectly through intermediate electron levels, two features are noteworthy concerning the Kondo effect. First, the Kondo peak in the spectrum of local density of states becomes narrower as the coupling to the leads is much larger than the interdot coupling, which is just opposite to the case of direct dot-lead coupling. Secondly, the increment of the coupling to the leads and the deviation of the intermediate levels from the Fermi level can effectively facilitate the formation of the negative differential conductance.  相似文献   

18.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson’s numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.  相似文献   

19.
We measure the current and shot noise in a quantum dot in the Kondo regime to address the nonequilibrium properties of the Kondo effect. By systematically tuning the temperature and gate voltages to define the level positions in the quantum dot, we observe an enhancement of the shot noise as temperature decreases below the Kondo temperature, which indicates that the two-particle scattering process grows as the Kondo state evolves. Below the Kondo temperature, the Fano factor defined at finite temperature is found to exceed the expected value of unity from the noninteracting model, reaching 1.8±0.2.  相似文献   

20.
使用单杂质的Ansderson模型, 从理论上研究了一个嵌入单量子点Aharonov-Bohm环系统处在 近藤区时的基态性质, 并用slave-boson平均场方法求解了该模型.结果表明:在零温, 当介 观环内电子平均能级间隔大于近藤关联能时, 系统内仍然存在一个被减弱了的近藤效应;系 统的基态性质依赖于系统的宇称和环的大小;而尺寸效应和近藤屏蔽效应的共存导致了系统 丰富的物理性质.同时, 可以通过测量介观环中的持续电流和杂质磁化率, 达到探测近藤屏 蔽云的目的. 关键词: 持续电流 杂质磁化率 宇称效应 近藤效应 近藤屏蔽云  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号