首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We investigate the possible occurrance of partially depaired states in superconducting intercalated layered systems. Those states are discussed as a possible explanation of the high critical fields found in some of these materials. It is shown that the Chandrasekhar-Clogston limit does not apply to those states mentioned above and that the maximum field compatible with superconductivity is a sensitive function of the shape of the Fermi surface. Mean free path and spin-orbit effects on the partially depaired state are investigated. An experiment is proposed to decide between the partially depaired state and a large spin-orbit scattering rate as possible explanations for the large critical fields.  相似文献   

2.
In this Letter we show how, for small values of the Fermi energy compared to the spin-orbit splitting of Rashba type, a topological change of the Fermi surface leads to an effective reduction of the dimensionality in the electronic density of states in the low charge density regime. We investigate its consequences on the onset of the superconducting instability. We show that the superconducting critical temperature is significantly tuned in this regime by the spin-orbit coupling. We suggest that materials with strong spin-orbit coupling are good candidates for enhanced superconductivity.  相似文献   

3.
We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that, in particular, spin-orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intragrain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as being due to scattering effects in single small grains.  相似文献   

4.
Superconductivity of Heavy-Fermions, with an emphasis on hexagonal UPt3, is investigated microscopically on the basis of the LNCA-approximation for strongly correlated electrons in a Kondo lattice and of Eliashberg theory for anisotropic singlet and triplet superconducting order. The effective interaction kernel incorporates exchange of spin fluctuations carried by strongly renormalized particle-hole excitations as well as exchange of phonons generated by the breathing mechanism. Particular care is taken to include realistic anisotropies in band structure and couplings and to expand interaction kernel and order parameter in appropriate Fermi surface harmonics. Separate interactions and corresponding gap equations are used for pseudo-spin-singlet and -triplet channel, with a restriction to the case of weak spin-orbit coupling. Our main results include a detailed study of phonon- and spin-fluctuation mechanisms as a possible source for superconductivity and, in combination, their mutual influence and competition. Furthermore, the questions regarding singlet or triplet order, conventional or unconventional symmetry, order parameter zeros and phase transitions between different superconducting states are addressed. We propose a possible scenario of Heavy-Fermion superconductivity.  相似文献   

5.
自从色超导理论被提出以来, 通常考虑的是参与配对的夸克的化学势不相等时的情形。 当化学势的差别达到某一合适值时, 库柏对就有非零的总动量, 这就是Larkin Ovchinnikov Fulde Ferre(LOFF)态。 这种形式的夸克凝聚自发破坏了平移不变性和旋转不变性, 导致能隙以晶格的形式周期性变化。 在中等重子数密度区的基础上, 从SU(2) NJL模型出发描述两味LOFF态, 并通过平均场近似, 引用N G基底、 傅立叶变换和频率求和等方法得到热力学势, 进而通过热力学势对序参量求偏导得到耦合的Gap方程, 并使用数值法解耦合方程找到LOFF态的窗口。 Ever since the theory of color superconductivity was issued, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with non zero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. This article focuses on the two flavor color superconducting phase at moderate baryon density. LOFF state is described through SU(2) NJL model. By using the mean field approximation, N G basis, fourier transformation, frequency summation, the thermodynamic potential and Gap equation are obtained. Finally, the window of LOFF state is found by the numerical method.  相似文献   

6.
The Fermi gas approach to the weak-coupling superconductivity in the non-centrosymmetric systems lead to a conclusion of an approximately spin-orbit coupling independent critical temperature of the singlet states as well as the triplet states defined by the order parameter aligned with the antisymmetric spin-orbit coupling vector. We indicate that the above results follow from a simplified approximation of a density of states by a constant Fermi surface value. Such a scenario does not properly account for the spin-split quasiparticle energy spectrum and reduces the spin-orbit coupling influence on superconductivity to the bare pair-breaking effect of a lifted spin degeneracy. Applying the tight-binding model, which captures the primary features of the spin-split energy band, i.e., its enhanced width and the spin-orbit coupling induced redistribution of the spectral weights in the density of states, we calculate the critical temperature of a non-centrosymmetric superconductor. We report a general tendency of the critical temperature to be suppressed by the antisymmetric spin-orbit coupling. We indicate that, the monotonic decrease of the critical temperature may be altered by the spin-orbit coupling induced van Hove singularities which, when driven to the Fermi level, generate maxima in the phase diagram. Extending our considerations to the intermediate-coupling superconductivity we point out that the spin-orbit coupling induced change of the critical temperature depends on the structure of the electronic energy band and both – the strength and symmetry of the pair potential. Finally, we discuss the mixed singlet-triplet state superconducting instability and establish conditions concerning the symmetry of the singlet and triplet counterparts as well as the range of the spin-orbit coupling energy which make such a phase transition possible.  相似文献   

7.
We numerically analyze the effect of finite length of the superconducting regions on the low-energy spectrum, current-phase curves, and critical currents in junctions between trivial and topological superconductors. Such junctions are assumed to arise in nanowires with strong spin-orbit coupling under external magnetic fields and proximity-induced superconductivity. We show that all these quantities exhibit a strong dependence on the length of the topological sector in the topological phase and serve as indicators of the topological phase and thus the emergence of Majorana bound states at the end of the topological superconductor.  相似文献   

8.
The superconducting and magnetic states of asymmetric ferromagnet/superconductor/ferromagnet (F/S/F′) nanostructures have been investigated using the boundary value problem for the Eilenberger function. It has been shown that 0- and π-phase superconducting states of pure thin F/S/F′ trilayers are controlled by the magnitude and sign of electron correlations in the F and F′ layers, as well as by the competition between homogeneous Bardeen-Cooper-Schrieffer (BCS) pairing and inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) pairing. The LOFF-BCS-LOFF separate re-entrant superconductivity has been predicted for F/S/F′ trilayers. A continuous control of the pair-breaking factor in the Eilenberger function and transition to the state with re-entrant superconductivity is achieved by varying the thickness of the F′ layer. Sine-modulated 2D LOFF states in asymmetric F/S/F′ trilayers are possible not only for parallel, but also for antiparallel orientations of the magnetizations of the F and F′ layers; this fact significantly facilitates the experimental implementation of the predicted phenomena.  相似文献   

9.
Previously the search for the modulated superconducting Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state was performed by means of measurements which do not give direct information on spatial modulation of the superconducting state. We propose to measure interlayer conductivity in Josephson-coupled layered superconductors as a function of the strength and the orientation of the parallel magnetic field. We show that interlayer critical current and the conductivity have peaks when the magnetic field is perpendicular to the in-plane wave vector of the LOFF state and when the period of the Josephson vortex lattice induced by the magnetic field is commensurate with the LOFF period.  相似文献   

10.
Here we review measurements of the normal and superconducting state properties of iron-based superconductors using high magnetic fields. We discuss the various physical mechanisms that limit superconductivity in high fields, and the information on the superconducting state that can be extracted from the upper critical field, but also how thermal fluctuations affect its determination by resistivity and specific heat measurements. We also discuss measurements of the normal state electronic structure focusing on measurement of quantum oscillations, particularly the de Haas–van Alphen effect. These results have determined very accurately, the topology of the Fermi surface and the quasi-particle masses in a number of different iron-based superconductors, from the 1111, 122 and 111 families.  相似文献   

11.
Thin films provide an ideal means for studying the role of spin paramagnetism in the theory of superconductivity. A review is given of the theoretical and experimental work available until now with respect to this problem. It includes a study of the excitation spectrum of thin films in a parallel magnetic field and the experimental evidence of Zeeman splitting of superconducting quasiparticles. The role of spin-orbit interaction is discussed in detail. The application of spin selective tunnelling is shown. Furthermore, it includes a study of the order of phase transition between the normal state and the paramagnetically limited superconducting state. A detailed discussion is given of the generalized Ginzburg-Landau equation including numerical evaluations. The applicability of Tinkham's formula is discussed, which is relevant for the determination of critical fields of arbitrary orientations to the film. Finally, account is given of the work which deals with the influence of spin paramagnetism on superconducting fluctuations. Recent experimental and theoretical work is described and discussed.  相似文献   

12.
The magnetic scattering of electrons is studied, paying special attention to the problem of coexistence of superconductivity and ferromagnetism. The utilized model consists of two electronic bands, one of which can become superconducting, and a system of localized spins. The calculated transition temperatures of the superconduction and the magnetic subsystems show regions of coexistence for not too large exchange interactions. Generally speaking, coexistence is favoured due to spin-orbit scattering as well as due to the interaction of the superconducting band with the normal band in certain cases.  相似文献   

13.
High-resolution angle-resolved photoemission spectroscopy has been performed on Sb(111) to elucidate the origin of anomalous electronic properties in group-V semimetal surfaces. The surface was found to be metallic despite the semimetallic character of bulk. We clearly observed two surface-derived Fermi surfaces which are likely spin split, demonstrating that the spin-orbit interaction plays a dominant role in characterizing the surface electronic states of group-V semimetals. The universality or dissimilarity of the electronic structure in Bi and Sb is discussed in relation to the granular superconductivity, electron-phonon coupling, and surface charge or spin density wave.  相似文献   

14.
We derive the parallel upper critical field, Hc2, as a function of the temperature T in quasi-2D organic compound lambda-(BETS)2FeCl4, accounting for the formation of the nonuniform Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state. To further check the 2D LOFF model, we propose to study the Hc2(T) curve at low T in tilted fields, where the vortex state is described by the high Landau level functions characterized by the index n. We predict a cascade of first-order transitions between vortex phases with different n, between phases with different types of the symmetry at given n and the change of the superconducting transition from the second order to the first order as FeCl4 ions are replaced partly by GaCl4 ions.  相似文献   

15.
It is shown that, in an edge superconducting layer of a thin film in a magnetic field perpendicular to the film plane, phase slip centers are formed. The centers arise below the superconducting transition temperature because of the thermal fluctuations of the order parameter and lead to the suppression of superconductivity. The resistance corresponding to such fluctuations is determined, and the contribution of the Aslamazov-Larkin correction to the conductivity of a thin film in magnetic fields slightly exceeding the critical field that breaks the surface superconductivity is calculated.  相似文献   

16.
In two-flavor dense quark matter, we describe the dynamics in the single plane wave Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state satisfying the color and electric neutrality conditions. We find that because the neutral LOFF state itself suffers from a chromomagnetic instability in the whole region where it coexists with the (gapped or gapless) two-flavor superconducting phases, it cannot cure this instability in those phases. This is unlike the recently revealed gluonic phase which seems to be able to resolve this problem.  相似文献   

17.
We present a first-principles study of the electron-phonon interaction and the prediction of the superconducting critical temperature in molecular metallic hydrogen. Our study is able to single out the features which drive the system towards superconductivity: mainly, a rich and complex Fermi surface and strongly coupled phonon modes driving the intra- or intermolecular charge transfer. We demonstrate that in this simple system, a very high superconducting critical temperature can be reached via electron-phonon and Coulomb electron-electron interactions.  相似文献   

18.
In this paper we study the surface superconductivity phenomenon of type 2 superconductors under applied magnetic fields above the critical field . We show that, for a cylindrical superconductor of infinite height placed in a homogeneous applied magnetic field, H e 3, with H lying in between and keeping away from and , superconductivity persists uniformly at a thin sheath surrounding the entire lateral surface of the sample. As the applied field decreases gradually, superconductivity in the surface sheath becomes strong and develops into a surface superconducting state, while the interior of the sample remains close to the normal state. Received: 21 May 2001 / Accepted: 11 February 2002  相似文献   

19.
FeTe, a non-superconducting parent compound in the iron-chalcogenide family, becomes superconducting after annealing in oxygen. Under the presence of magnetism, spin-orbit coupling, inhomogeneity and lattice distortion,the nature of its superconductivity is not well understood. Here we combine the mutual inductance technique with magneto transport to study the magnetization and superconductivity of FeTe thin films. It is found that the films with the highest T_C show non-saturating superfluid density and a strong magnetic hysteresis distinct from that in a homogeneous superconductor. Such a hysteresis can be well explained by a two-level critical state model and suggests the importance of granularity to superconductivity in this compound.  相似文献   

20.
Motivated by the recent discovery of superconductivity on the heterointerface LaAlO3/SrTiO3, we theoretically investigate the impurity-induced resonance states with coexisting spin singlet s- and triplet p-wave pairing symmetries by considering the influence of Rashba-type spin-orbit interaction (RSOI). Due to the nodal structure of the mixed gap function, we find single nonmagnetic impurity-induced resonance peaks appearing in the local density of state. We also analyze the evolutions of density of states and local density of states with the weight of triplet pairing component determined by the strength of RSOI, which will be widely observed in thin films of superconductors with surface or interface-induced RSOI, or various noncentrosymmetric superconductors in terms of point contact tunneling and scanning tunneling microscopy, and thus shed light on the admixture of the spin singlet and RSOI-induced triplet superconducting states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号