首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We demonstrate time reversal of nuclear spin dynamics in highly magnetized dilute liquid (3)He-(4)He mixtures through effective inversion of long-range dipolar interactions. These experiments, which involve using magic sandwich NMR pulse sequences to generate spin echoes, probe the spatiotemporal development of turbulent spin dynamics and promise to serve as a versatile tool for the study and control of dynamic magnetization instabilities. We also show that a repeated magic sandwich pulse sequence can be used to dynamically stabilize modes of nuclear precession that are otherwise intrinsically unstable. To date, we have extended the effective precession lifetimes of our magnetized samples by more than three orders of magnitude.  相似文献   

2.
3He spin diffusion measurements for 3He-4He mixture films on Nuclepore are reported as a function of 3He coverage for 0. 030相似文献   

3.
For a two-state quantum object interacting with a slow mesoscopic interacting spin bath, we show that a many-body solution of the bath dynamics conditioned on the quantum-object state leads to an efficient control scheme to recover the lost quantum-object coherence through disentanglement. We demonstrate the theory with the realistic problem of one electron spin in a bath of many interacting nuclear spins in a semiconductor quantum dot. The spin language can be easily generalized to a quantum object in contact with a bath of interacting multilevel quantum units with the caveat that the bath is mesoscopic and its dynamics is slow compared with the quantum object.  相似文献   

4.
New limit on Lorentz- and CPT-violating neutron spin interactions   总被引:1,自引:0,他引:1  
We performed a search for neutron spin coupling to a Lorentz- and CPT-violating background field using a magnetometer with overlapping ensembles of K and 3He atoms. The comagnetometer is mounted on a rotary platform for frequent reversal of its orientation. We measure sidereal oscillations in the signal to search for anomalous spin coupling of extra-solar origin. We determine the equatorial components of the background field interacting with the neutron spin to be b?Xn=(0.1 ± 1.6) × 10?33 GeV and b?Yn=(2.5 ± 1.6) × 10?33 GeV, improving on the previous limit by a factor of 30. This measurement represents the highest energy resolution of any spin anisotropy experiment.  相似文献   

5.
We demonstrate optical orientation in Ge/SiGe quantum wells and study their spin properties. The ultrafast electron transfer from the center of the Brillouin zone to its edge allows us to achieve high spin polarizations and to resolve the spin dynamics of holes and electrons. The circular polarization degree of the direct gap photoluminescence exceeds the theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and light holes states, respectively. The spin lifetime of holes at the top of the valence band is estimated to be ~0.5 ps and it is governed by transitions between light and heavy hole states. Electrons at the bottom of the conduction band, on the other hand, have a spin lifetime that exceeds 5?ns below 150?K. Theoretical analysis of the spin relaxation indicates that phonon-induced intervalley scattering dictates the spin lifetime of electrons.  相似文献   

6.
We demonstrate a room-temperature spin dynamo where the precession of electron spins in ferromagnets converts energy from microwaves to a bipolar current of electricity. The current/power ratio is at least 3 orders of magnitude larger than that found previously for spin-driven currents in semiconductors. The observed bipolar nature and intriguing symmetry are fully explained by the spin rectification effect via which the nonlinear combination of spin and charge dynamics creates dc currents.  相似文献   

7.
We describe here a method of performing adiabatic fast passage (AFP) spin flipping of polarized 3He used as a neutron spin filter (NSF) to polarize neutron beams. By reversing the spin states of the 3He nuclei the polarization of a neutron beam can be efficiently reversed allowing for the transmission of a neutron beam polarized in either spin state. Using an amplitude modulated frequency sweep lasting 500 ms we can spin flip a polarized 3He neutron spin filter with only 1.8×10−5 loss in 3He polarization. The small magnetic fields (10-15 G) used to house neutron spin filters mean the 3He resonant frequencies are low enough to be generated using a computer with a digital I/O card. The versatility of this systems allows AFP to be performed on any beamline or in any laboratory using 3He neutron spin filters and polarization losses can be minimised by adjusting sweep parameters.  相似文献   

8.
We experimentally demonstrate that the decoherence of a spin by a spin bath can be completely eliminated by fully polarizing the spin bath. We use electron paramagnetic resonance at 240 GHz and 8 T to study the electron-spin coherence time T2 of nitrogen-vacancy centers and nitrogen impurities in diamond from room temperature down to 1.3 K. A sharp increase of T2 is observed below the Zeeman energy (11.5 K). The data are well described by a suppression of the flip-flop induced spin bath fluctuations due to thermal electron-spin polarization. T2 saturates at approximately 250 micros below 2 K, where the polarization of the electron-spin bath exceeds 99%.  相似文献   

9.
We report on the observation of many-body spin dynamics of interacting, one-dimensional (1D) ultracold bosonic gases with two spin states. By controlling the nonlinear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics of the relative phase between the two components. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique, which unveils the role of quantum fluctuations in 1D. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the nonequilibrium evolution of one-dimensional many-body quantum systems.  相似文献   

10.
We have investigated spin singlet Mott states of spin-one bosons with antiferromagnetic interactions. These spin singlet states do not break rotational symmetry and exhibit remarkably different macroscopic properties compared with nematic Mott states of spin-one bosons. We demonstrate that the dynamics of spin singlet Mott states is fully characterized by even- or odd-class quantum dimer models. The difference between spin singlet Mott states for even and odd numbers of atoms per site can be attributed to a selection rule in the low energy sectors of on-site Hilbert spaces; alternatively, it can also be attributed to an effect of Berry’s phases on bosonic Mott states. We also discuss evidence for spin singlet quantum condensate of spin-one atoms. Our main finding is that in a projected spin singlet Hilbert space, the low energy physics of spin-one bosons is equivalent to that of a Bose-Hubbard model for spinless bosons interacting via Ising gauge fields. The other major finding is spin-charge separation in some one-dimensional Mott states. We propose charge-e spin singlet superfluid for an odd number of atoms per lattice site and charge-2e spin singlet superfluid for an even number of atoms per lattice site in one-dimensional lattices. All discussions in this article are limited to integer numbers of bosons per site.  相似文献   

11.
Deterministic dynamics in extended phase space of a constant temperature interacting spin system is formulated. The spin temperature is recovered through the constrained equation of motion and is in agreement with Rugh’s geometrical approach to temperature for classical Heisenberg spin systems. Detailed comparisons are investigated between state-of-the-art stochastic spin dynamics and deterministic dynamics using a chain of thermostats, for which an accelerated convergence structure is found.  相似文献   

12.
Dy2Ti2O7 is a geometrically frustrated magnetic material with a strongly correlated spin ice regime that extends from 1 K down to as low as 60 mK. The diffuse elastic neutron scattering intensities in the spin ice regime can be remarkably well described by a phenomenological model of weakly interacting hexagonal spin clusters, as invoked in other geometrically frustrated magnets. We present a highly refined microscopic theory of Dy2Ti2O7 that includes long-range dipolar and exchange interactions to third nearest neighbors and which demonstrates that the clusters are purely fictitious in this material. The seeming emergence of composite spin clusters and their associated scattering pattern is instead an indicator of fine-tuning of ancillary correlations within a strongly correlated state.  相似文献   

13.
The relaxation of hollow atoms produced by slow multiply charged ions impinging on surfaces produces characteristic Auger electron spectra. These spectra, which serve as fingerprints of the interaction, can be used to probe local spin ordering at surfaces by relating changes in the intensities of different spin states to local spin polarization at the surface. The area from which the electrons are captured is of the order of a few Angstrom(2), only. The potential of the method is illustrated by He(2+) and N(6+) ions interacting with a ferromagnetic Ni(110) crystal. From the Auger spectra we determine a spin polarization of approximately 90% at room temperature.  相似文献   

14.
Pulsed NMR was used to investigate nuclear spin dynamics of nuclear-ordered solid3He in the low field phase. The nuclear spin motion became unstable under certain conditions. Under stable conditions the spin motion can be described by the OCF equations. The tipping-angle-dependent frequency shift and multiple spin echoes were observed, which are similar to the case of superfluid3He. The onset of the instability of spin motion is attributed to the stimulated emission mechanism through the three-magnon relaxation process, which is similar to the Suhl instability in electronic magnetism. We derived the magnon life time from the analysis of the instability. During the instability, a largenegative frequency shift was observed. This negative shift is explained by the extension of Fomin-Ohmi's theory to include the state of decayed magnon and this explanation is consistent with the instability model.  相似文献   

15.
We consider the controlled switching of individual spins in a nonlinear, interacting spin chain by means of external magnetic fields. We show analytically and by full numerical simulations that stochastic switching is achievable when the driving fields are such that the underlying semi-classical dynamics is chaotic. On the basis of random matrix theory and the geometry of quantum evolution we confirm the quantum case to follow qualitatively the semi-classical behavior.  相似文献   

16.
We develop a theory of spin noise in semiconductor nanowires considered as prospective elements for spintronics. In these structures, spin-orbit coupling can be realized as a random function of a coordinate correlated on a spatial scale of the order of 10?nm. By analyzing different regimes of electron transport and spin dynamics, we demonstrate that the spin relaxation can be very slow, and the resulting noise power spectrum increases algebraically as the frequency goes to zero. This effect makes spin phenomena in nanowires best suitable for studies by rapidly developing spin-noise spectroscopy.  相似文献   

17.
We theoretically investigate the spin dynamics of a heavy hole confined to an unstrained III-V semiconductor quantum dot and interacting with a narrowed nuclear-spin bath. We show that band hybridization leads to an exponential decay of hole-spin superpositions due to hyperfine-mediated nuclear pair flips, and that the accordant single-hole-spin decoherence time T2 can be tuned over many orders of magnitude by changing external parameters. In particular, we show that, under experimentally accessible conditions, it is possible to suppress hyperfine-mediated nuclear-pair-flip processes so strongly that hole-spin quantum dots may be operated beyond the "ultimate limitation" set by the hyperfine interaction which is present in other spin-qubit candidate systems.  相似文献   

18.
We use accurate ab initio and quantum scattering calculations to demonstrate that the maximum 3He spin polarization that can be achieved in spin-exchange collisions with potassium (3?K) and silver (1??Ag) atoms is limited by the anisotropic hyperfine interaction. We find that spin exchange in Ag-He collisions occurs much faster than in K-He collisions over a wide range of temperatures (10-600 K). Our analysis indicates that measurements of trap loss rates of 2S atoms in the presence of cold 3He gas may be used to probe anisotropic spin-dependent interactions in atom-He collisions.  相似文献   

19.
Low-temperature thermodynamic properties of strongly interacting Fermi liquids with a fermion condensate are investigated. We demonstrate that the spin susceptibility of these systems exhibits the Curie-Weiss law, and the entropy contains a temperature-independent term. The excessive entropy is released at the superconducting transition, enhancing the specific heat jump deltaC and rendering it proportional to the effective Curie constant. The theoretical results are favorably compared with the experimental data on the heavy-fermion metal CeCoIn5, as well as 3He films.  相似文献   

20.
We have measured the ultralow temperature and low field magnetic susceptibility of the 4/7 phase of two-dimensional 3He adsorbed on graphite preplated by one layer of 4He. The experiments are performed by progressively adding 4He to the system, thus suppressing in a controlled way the 3He atoms trapped in substrate heterogeneities. This procedure enables us to determine the intrinsic properties of this spin 1/2 model magnet in the zero field limit. The results show quantitatively that the system is strongly frustrated by multiple spin exchange interactions. A characteristic gapped spin liquid behavior is observed at ultralow temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号