首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interesting cutting plane approaches for solving certain difficult multiextremal global optimization problems can fail to converge. Examples include the concavity cut method for concave minimization and Ramana's recent outer approximation method for unary programs which are linear programming problems with an additional constraint requiring that an affine mapping becomes unary. For the latter problem class, new convergent outer approximation algorithms are proposed which are based on sufficiently deep l-norm or quadratic cuts. Implementable versions construct optimal simplicial inner approximations of Euclidean balls and of intersections of Euclidean balls with halfspaces, which are of general interest in computational convexity. Computational behavior of the algorithms depends crucially on the matrices involved in the unary condition. Potential applications to the global minimization of indefinite quadratic functions subject to indefinite quadratic constraints are shown to be practical only for very small problem sizes.  相似文献   

2.
Here we propose a global optimization method for general, i.e. indefinite quadratic problems, which consist of maximizing a non-concave quadratic function over a polyhedron inn-dimensional Euclidean space. This algorithm is shown to be finite and exact in non-degenerate situations. The key procedure uses copositivity arguments to ensure escaping from inefficient local solutions. A similar approach is used to generate an improving feasible point, if the starting point is not the global solution, irrespective of whether or not this is a local solution. Also, definiteness properties of the quadratic objective function are irrelevant for this procedure. To increase efficiency of these methods, we employ pseudoconvexity arguments. Pseudoconvexity is related to copositivity in a way which might be helpful to check this property efficiently even beyond the scope of the cases considered here.  相似文献   

3.
In Floudas and Visweswaran (1990), a new global optimization algorithm (GOP) was proposed for solving constrained nonconvex problems involving quadratic and polynomial functions in the objective function and/or constraints. In this paper, the application of this algorithm to the special case of polynomial functions of one variable is discussed. The special nature of polynomial functions enables considerable simplification of the GOP algorithm. The primal problem is shown to reduce to a simple function evaluation, while the relaxed dual problem is equivalent to the simultaneous solution of two linear equations in two variables. In addition, the one-to-one correspondence between the x and y variables in the problem enables the iterative improvement of the bounds used in the relaxed dual problem. The simplified approach is illustrated through a simple example that shows the significant improvement in the underestimating function obtained from the application of the modified algorithm. The application of the algorithm to several unconstrained and constrained polynomial function problems is demonstrated.  相似文献   

4.
Natural basic concepts in multiple-objective optimization lead to difficult multiextremal global optimization problems. Examples include detection of efficient points when nonconvexities occur, and optimization of a linear function over the efficient set in the convex (even linear) case. Assuming that a utility function exists allows one to replace in general the multiple-objective program by a single, nonconvex optimization problem, which amounts to a minimization over the efficient set when the utility function is increasing. A new algorithm is discussed for this utility function program which, under natural mild conditions, converges to an -approximate global solution in a finite number of iterations. Applications include linear, convex, indefinite quadratic, Lipschitz, and d.c. objectives and constraints.  相似文献   

5.
An increasingly popular approach when solving the phase and chemical equilibrium problem is to pose it as an optimization problem. However, difficulties are encountered due to the highly nonlinear nature of the models used to represent the behavior of the fluids, and because of the existence of multiple local solutions. This work shows how it is possible to guarantee -global solutions for a certain important class of the phase and chemical equilibrium problem, namely when the liquid phase can be modeled using neither the Non-Random Two-Liquid (NRTL) equation, or the UNIversal QUAsi Chemical (UNIQUAC) equation. Ideal vapor phases are easily incorporated into the global optimization framework. A numberof interesting properties are described which drastically alter the structure of the respective problems. For the NRTL equation, it is shown that the formulation can be converted into a biconvex optimization problem. The GOP algorithm of Floudas and Visweswaran [8, 9] can then be used to obtain -global solutions in this case. For the UNIQUAC equation, the new properties show how the objective function can be transformed into the difference of two convex functions (i.e. a D.C. programming problem is obtained), where the concave portion is separable. A branch and bound algorithm based on that of Falk and Soland [6] is used to guarantee convergence to an -global solution. Examples are presented which demonstrate the performance of both algorithms.  相似文献   

6.
In this paper, we propose a 2-step trust region indefinite dogleg path method for the solution of nonlinear equality constrained optimization problems. The method is a globally convergent modification of the locally convergent Fontecilla method and an indefinite dogleg path method is proposed to get approximate solutions of quadratic programming subproblems even if the Hessian in the model is indefinite. The dogleg paths lie in the null space of the Jacobian matrix of the constraints. An 1 exact penalty function is used in the method to determine if a trial point is accepted. The global convergence and the local two-step superlinear convergence rate are proved. Some numerical results are presented.  相似文献   

7.
A branch-and-reduce approach to global optimization   总被引:4,自引:0,他引:4  
This paper presents valid inequalities and range contraction techniques that can be used to reduce the size of the search space of global optimization problems. To demonstrate the algorithmic usefulness of these techniques, we incorporate them within the branch-and-bound framework. This results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm components and theoretical properties are provided. Specialized algorithms for polynomial and multiplicative programs are developed. Extensive computational results are presented for engineering design problems, standard global optimization test problems, univariate polynomial programs, linear multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the problems solved, the computer implementation of the proposed algorithm provides very accurate solutions in modest computational time.  相似文献   

8.
Primal-relaxed dual global optimization approach   总被引:8,自引:0,他引:8  
A deterministic global optimization approach is proposed for nonconvex constrained nonlinear programming problems. Partitioning of the variables, along with the introduction of transformation variables, if necessary, converts the original problem into primal and relaxed dual subproblems that provide valid upper and lower bounds respectively on the global optimum. Theoretical properties are presented which allow for a rigorous solution of the relaxed dual problem. Proofs of -finite convergence and -global optimality are provided. The approach is shown to be particularly suited to (a) quadratic programming problems, (b) quadratically constrained problems, and (c) unconstrained and constrained optimization of polynomial and rational polynomial functions. The theoretical approach is illustrated through a few example problems. Finally, some further developments in the approach are briefly discussed.The authors gratefully acknowledge financial support from National Science Foundation Presidential Young Investigator Award CBT-88-57013. The authors are also grateful to Drs. F. A. Al-Khayyal, B. Jaumard, P. M. Pardalos, and H. D. Sherali for helpful comments on an earlier draft of this paper.  相似文献   

9.
Extended Linear-Quadratic Programming (ELQP) problems were introduced by Rockafellar and Wets for various models in stochastic programming and multistage optimization. Several numerical methods with linear convergence rates have been developed for solving fully quadratic ELQP problems, where the primal and dual coefficient matrices are positive definite. We present a two-stage sequential quadratic programming (SQP) method for solving ELQP problems arising in stochastic programming. The first stage algorithm realizes global convergence and the second stage algorithm realizes superlinear local convergence under a condition calledB-regularity.B-regularity is milder than the fully quadratic condition; the primal coefficient matrix need not be positive definite. Numerical tests are given to demonstrate the efficiency of the algorithm. Solution properties of the ELQP problem underB-regularity are also discussed.Supported by the Australian Research Council.  相似文献   

10.
本文提出了一个求不定二次规划问题全局最优解的新算法.首先,给出了三种计算下界的方法:线性逼近法、凸松弛法和拉格朗日松弛法;并且证明了拉格朗日对偶界与通过凸松弛得到的下界是相等的;然后建立了基于拉格朗日对偶界和矩形两分法的分枝定界算法,并给出了初步的数值试验结果.  相似文献   

11.
This paper addresses the problem of minimizing an arbitrary finite sum of products of two convex functions over a convex set. Nonconvex problems in this form constitute a class of generalized convex multiplicative problems. Convex analysis results allow to reformulate the problem as an indefinite quadratic problem with infinitely many linear constraints. Special properties of the quadratic problem combined with an adequate outer approximation procedure for handling its semi-infinite constrained set enable an efficient constraint enumeration global optimization algorithm for generalized convex multiplicative programs. Computational experiences illustrate the proposed approach.  相似文献   

12.
This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and quadratic equality together with inequality constraints. The global convergence of the algorithm framework is presented under the Mangasarian-Fromovitz constraint qualification (MFCQ), and the conditions for superlinear and quadratic convergence of the algorithm framework are given under the MFCQ, the constant rank constraint qualification (CRCQ) as well as the strong second-order sufficiency conditions (SSOSC). As an incidental result, the definition of an approximate KKT point is brought forward, and the global convergence of a sequence of approximate KKT points is analysed.  相似文献   

13.
The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these feasible solutions and the best resulting solution provides an estimate for the optimal solution to the quadratic program with complementarity constraints. Computational testing of such an approach is described for a problem arising in portfolio optimization.Research supported in part by the National Science Foundations VIGRE Program (Grant DMS-9983646).Research partially supported by NSF Grant number CCR-9901822.  相似文献   

14.
A function mapping from n to is called an SC1-function if it is differentiable and its derivative is semismooth. A convex SC1-minimization problem is a convex minimization problem with an SC1-objective function and linear constraints. Applications of such minimization problems include stochastic quadratic programming and minimax problems. In this paper, we present a globally and superlinearly convergent trust-region algorithm for solving such a problem. Numerical examples are given on the application of this algorithm to stochastic quadratic programs.This work was supported by the Australian Research Council.We are indebted to Dr. Xiaojun Chen for help in the computation. We are grateful to two anonymous referees for their comments and suggestions, which improved the presentation of this paper.  相似文献   

15.
This paper describes a new technique for generating convex, strictly concave and indefinite (bilinear or not) quadratic programming problems. These problems have a number of properties that make them useful for test purposes. For example, strictly concave quadratic problems with their global maximum in the interior of the feasible domain and with an exponential number of local minima with distinct function values and indefinite and jointly constrained bilinear problems with nonextreme global minima, can be generated.Unlike most existing methods our construction technique does not require the solution of any subproblems or systems of equations. In addition, the authors know of no other technique for generating jointly constrained bilinear programming problems.Support of this work has been provided by the Instituto Nacional de Investigação Científica de Portugal (INIC) under contract 89/EXA/5 and by the Natural Sciences and Engineering Research Council of Canada operating grant 5671.Much of this paper was completed while this author was on a research sabbatical at the Universidade de Coimbra, Portugal.  相似文献   

16.
In this paper we present an algorithm for solving nonconvex quadratically constrained quadratic programs (all-quadratic programs). The method is based on a simplicial branch-and-bound scheme involving mainly linear programming subproblems. Under the assumption that a feasible point of the all-quadratic program is known, the algorithm guarantees an -approximate optimal solution in a finite number of iterations. Computational experiments with an implementation of the procedure are reported on randomly generated test problems. The presented algorithm often outperforms a comparable rectangular branch-and-bound method.  相似文献   

17.
The purpose of this article is to develop a branch-and-bound algorithm using duality bounds for the general quadratically-constrained quadratic programming problem and having the following properties: (i) duality bounds are computed by solving ordinary linear programs; (ii) they are at least as good as the lower bounds obtained by solving relaxed problems, in which each nonconvex function is replaced by its convex envelope; (iii) standard convergence properties of branch-and-bound algorithms for nonconvex global optimization problems are guaranteed. Numerical results of preliminary computational experiments for the case of one quadratic constraint are reported.  相似文献   

18.
A primal-relaxed dual global optimization algorithm is presented along with an extensive review for finding the global minimum energy configurations of microclusters composed by particles interacting with any type of two-body central forces. First, the original nonconvex expression for the total potential energy is transformed to the difference of two convex functions (DC transformation) via an eigenvalue analysis performed for each pair potential that constitutes the total potential energy function. Then, a decomposition strategy based on the GOP algorithm [1–4] is designed to provide tight upper and lower bounds on the global minimum through the solutions of a sequence of relaxed dual subproblems. A number of theoretical results are included which expedite the computational effort by exploiting the special mathematical structure of the problem. The proposed approach attains-convergence to the global minimum in a finite number of iterations. Based on this procedure global optimum solutions are generated for small Lennard-Jones and Morse (a=3) microclustersn7. For larger clusters (8N24 for Lennard-Jones and 8N30 for Morse), tight lower and upper bounds on the global solution are provided which serve as excellent initial points for local optimization approaches.  相似文献   

19.
For the problem of maximizing a convex quadratic function under convex quadratic constraints, we derive conditions characterizing a globally optimal solution. The method consists in exploiting the global optimality conditions, expressed in terms of -subdifferentials of convex functions and -normal directions, to convex sets. By specializing the problem of maximizing a convex function over a convex set, we find explicit conditions for optimality.  相似文献   

20.
In this paper, we will develop an algorithm for solving a quadratic fractional programming problem which was recently introduced by Lo and MacKinlay to construct a maximal predictability portfolio, a new approach in portfolio analysis. The objective function of this problem is defined by the ratio of two convex quadratic functions, which is a typical global optimization problem with multiple local optima. We will show that a well-designed branch-and-bound algorithm using (i) Dinkelbach's parametric strategy, (ii) linear overestimating function and (iii) -subdivision strategy can solve problems of practical size in an efficient way. This algorithm is particularly efficient for Lo-MacKinlay's problem where the associated nonconvex quadratic programming problem has low rank nonconcave property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号