首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature m(T) and time m(t) dependences of the magnetic moment of GaMnSb thin films with MnSb clusters have been measured. The m(t) dependences are straightened in semilogarithmic coordinates m(lnt). The temperature dependences of magnetic viscosity S(T) corresponding to the slope of straight lines m(lnt) have been studied. It have been demonstrated that the behavior of dependences S(T) is governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters. It have been found that the behavior of dependences m(T) measured after the films were cooled in zero magnetic field and in magnetic field H = 10 kOe is also governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters.  相似文献   

2.
The electrical resistivity ρ(T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev’s Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ(T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ(T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ? T C).  相似文献   

3.
The thermal conductivity κ and electrical resistivity ρ of a cellular ecoceramic, namely, the SiC/Si biomorphic composite, are measured in the temperature range 5–300 K. The SiC/Si biomorphic composite is fabricated using a cellular biocarbon template prepared from white eucalyptus wood by pyrolysis in an argon atmosphere with subsequent infiltration of molten silicon into empty through cellular channels of the template. The temperature dependences κ(T) and ρ(T) of the 3C-SiC/Si biomorphic composite at a silicon content of ~30 vol % are measured for samples cut out parallel and perpendicular to the direction of tree growth. Data on the anisotropy of the thermal conductivity κ are presented. The behavior of the dependences κ(T) and ρ(T) of the SiC/Si biomorphic composite at different silicon contents is discussed in terms of the results obtained and data available in the literature.  相似文献   

4.
The magnetic properties of Co-adsorbed SiC monolayer under an external electric field are investigated using first-principles method. In the absence of the electric field, the interaction between two Co atoms is ferromagnetic, which is originated by the p?d hybridization between Co and its neighboring C and Si atoms. When an electric field was introduced along the c axis, the interaction between two Co dopants switched from ferromagnetic to antiferromagnetic, which could be dominated by the competition between p?d exchange and superexchange. Moreover, the magnetic anisotropy prefers to parallel to the a axis and it seems not to be turn into the c axis under the electric field.  相似文献   

5.
This paper reports on comparative investigations of the structural and electrical properties of biomorphic carbons prepared from natural beech wood, as well as medium-density and high-density fiberboards, by means of carbonization at different temperatures T carb in the range 650–1000°C. It has been demonstrated using X-ray diffraction analysis that biocarbons prepared from medium-density and high-density fiberboards at all temperatures T carb contain a nanocrystalline graphite component, namely, three-dimensional crystallites 11–14 Å in size. An increase in the carbonization temperature T carb to 1000°C leads to the appearance of a noticeable fraction of two-dimensional graphene particles with the same sizes. The temperature dependences of the electrical resistivity ρ of the biomorphic carbons have been measured and analyzed in the temperature range 1.8–300 K. For all types of carbons under investigation, an increase in the carbonization temperature T carb from 600 to 900°C leads to a change in the electrical resistivity at T = 300 K by five or six orders of magnitude. The dependences ρ(T) for these materials are adequately described by the Mott law for the variable-range hopping conduction. It has been revealed that the temperature dependence of the electrical resistivity exhibits a hysteresis, which has been attributed to thermomechanical stresses in an inhomogeneous structure of the biocarbon prepared at a low carbonization temperature T carb. The crossover to the conductivity characteristic of disordered metal systems is observed at T carb ? 1000°C.  相似文献   

6.
Temperature dependences of the resistivity ρ(T) of samples of granular high-temperature superconductor YBa2Cu3O7 – δ are measured at various transverse external magnetic fields at 0 < H ext < 1900 Оe in the temperature range from the upper Josephson critical temperature of “weak bonds” T c2J to temperatures slightly exceeding the superconducting transition temperature T c . Based on the data obtained, the behavior of the field dependences of the critical temperatures of superconducting grains and “weak bonds,” and temperature and field dependences of the magnetic contribution to the resistivity \(\left[ {\Delta \rho \left( {T,H} \right) = \rho {{\left( T \right)}_{{H_{ext}} = const}} - \rho {{\left( T \right)}_{{H_{ext}} = 0}}} \right]\). It is shown that the behavior of the magnetic contribution to the resistivity Δρ along the line of the phase transition related to the onset of the magnetic field penetration in the form of Abrikosov vortices into the subsystem of superconducting grains T c1g (H ext) is anomalous. The concepts on the magnetic flux redistribution between both subsystems of two-level HTSC near in the vicinity of T c1g : the Josephson vortex decreases, and the Abrikosov vortex density increases.  相似文献   

7.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

8.
To elucidate the origin of the well-known anisotropy of the magnetoresistive properties of granular high-temperature superconductors (HTSs), which is related to the mutual orientation of magnetic field H and transport current j, we investigate the hysteretic dependences of magnetoresistance R(H) of the yttrium HTS sample at the perpendicular (Hj) and parallel (H || j) configurations. The hysteretic R(H) dependences are analyzed using the concept of the effective field in the intergrain boundaries through which superconducting current carriers tunnel. The effective degree of magnetic flux compression in the intergrain medium at the perpendicular configuration was found to be twice as much as at the parallel one. This approach explains well the anisotropy of the magnetoresistive properties of granular HTSs, which was previously reported by many authors, and the temperature dependences of the resistance in the resistive transition region.  相似文献   

9.
This paper reports on measurements of the thermal conductivity κ and the electrical conductivity σ of high-porosity (cellular pores) biocarbon precursors of white pine tree wood in the temperature range 5–300 K, which were prepared by pyrolysis of the wood at carbonization temperatures (T carb) of 1000 and 2400°C. The x-ray structural analysis has permitted the determination of the sizes of the nanocrystallites contained in the carbon framework of the biocarbon precursors. The sizes of the nanocrystallites revealed in the samples prepared at T carb = 1000 and 2400°C are within the ranges 12–35 and 25–70 Å, respectively. The dependences κ(T) and σ(T) are obtained for samples cut along the tree growth direction. As follows from σ(T) measurements, the biocarbon precursors studied are semiconducting. The values of κ and σ increase with increasing carbonization temperature of the samples. Thermal conductivity measurements have revealed that samples of both types exhibit a temperature dependence of the phonon thermal conductivity κph, which is not typical of amorphous (and amorphous to x-rays) materials. As the temperature increases, κph first varies proportional to T, to scale subsequently as ~T 1.7. The results obtained are analyzed.  相似文献   

10.
We have analyzed the temperature and magnetic-field dependences of resistivity ρ(T, H) of semiconducting compound Pb0.45Sn0.55Te doped with 5 at % In under a hydrostatic compression at P < 12 kbar. It is found that the temperature dependence ρ(T) at all pressures at T < 100 K is exponential with the activation energy decreasing upon an increase in pressure; this is accompanied with a superconducting transition on the ρ(T) and ρ(H) dependences at P > 4.8 kbar at T > 1 K (T c = 1.72 K at a level of 0.5ρ N at P = 6.8 kbar). We consider the model describing the low-temperature “dielectrization” of the semiconducting solid solution and the formation of the superconducting state upon an increase in the hydrostatic compression P > 4 kbar.  相似文献   

11.
Dielectric anomalies in the vicinity of the ferroelectric phase transition in nominally pure glycine phosphite (GPI) crystals and glycine phosphite crystals containing 2 mol % glycine phosphate (GP) are studied. It is revealed that the impurity-induced internal macroscopic polarization observed for GPI-GP crystals brings about smearing of the dielectric anomalies in directions both parallel and perpendicular to the axis of spontaneous polarization. The ferroelectric phase of the GPI and GPI-GP crystals is characterized by an unusual variation in the inverse permittivity in the Z direction perpendicular to the Y axis of spontaneous polarization. The temperature dependence of the inverse permittivity is described by a power expression (T c ? T) n with an exponent n larger than unity. The experimental data are analyzed in terms of the proposed thermodynamic model with two order parameters, namely, the displacement parameter η and the order-disorder parameter P, which have different physical natures but the same symmetry and allow for coupling invariants of the ηP and η3 P types, as well as for the built-in polarization in the case of GPI-GP crystals. The experimental and theoretical dependences are in good agreement. The coefficients of bilinear and nonlinear coupling between the order parameters are determined. It is shown that the phase transition in the crystals occurs in the vicinity of the tricritical point and that the unusual behavior of the permittivity with a variation in the temperature is explained by the contribution from high-order invariants of coupling.  相似文献   

12.
The low-temperature dependences of magnetic characteristics (namely, the coercive force H c , the remanent magnetization M r , local magnetic anisotropy fields H a, and the saturation magnetization M s ) determined from the irreversible and reversible parts of the magnetization curves for Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes are investigated experimentally. The behavior of the temperature dependences of the coercive force H c (T) and the remanent magnetization M r (T) indicates a single-domain structure of the particles under study and makes it possible to estimate their blocking temperature T B = 420–450 K. It is found that the saturation magnetization M s and the local magnetic anisotropy field H a vary with temperature as ~T 5/2.  相似文献   

13.
The temperature behavior of I-U curves and the field and temperature dependences of the electrical resistivity and dielectric permittivity of crystals of the LiCu2O2 phase have been studied. It was established that the crystals belong to p-type semiconductors and that their static resistivity in the range 80–260 K follows the Mott law ρ=Aexp(T0/T)1/4 describing variable-range hopping over localized states. At comparatively low electric fields, the crystals exhibit threshold switching and characteristic S-shaped I-U curves containing a region of negative differential resistivity. In the critical voltage region, jumps in the conductivity and dielectric permittivity are observed. Possible mechanisms of the disorder and electrical instability in these crystals are discussed.  相似文献   

14.
The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (Ha and Hc), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can be described within the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses (~10m e , where m e is the electron mass) and predominantly electron-electron scattering, which leads to the quadratic temperature dependences of ρa and ρc. The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝ 1/T type.  相似文献   

15.
The temperature dependences of the residual magnetization in narrow-band manganites (Pr0.67Ca0.33MnO3, Sm0.55Sr0.45Mn18O3, Sm0.55Sr0.45Mn16O3, and (NdEu)0.55Sr0.45Mn18O3) have been studied. All compounds studied are characterized by a fairly high residual magnetization M R (about 0.5 μB/Mn) at 4.2 K, which vanishes upon sample heating to the temperature T RE ≈ 30–35 K, which is much lower than the temperature T C of the ferromagnetic transition. However, upon magnetization of the samples at T RE < T < T C , the residual magnetization (smaller in magnitude) remains up to T C . For the composition (NdEu)0.55Sr0.45Mn18O3, the residual magnetization remains at T < T C , independent of the temperature of magnetization. The disappearance of the residual magnetization found at intermediate temperatures is apparently related to the destruction of the magnetic field-induced ferromagnetic ordering (which contains an additional contribution of the rare-earth sublattice).  相似文献   

16.
The problem of establishing the correlation between, on the one hand, the chemical and phase compositions of Ni1–xWx alloys (0 ≤ x ≤ 0.5) and, on the other hand, the character of the temperature dependences of the electrical resistivity, is considered. Based on the experimental ρ(T) curves, the concentration dependences of are reconstructed in the wide temperature range (50 K ≤ T ≤ 273 K). The ρ(x) curves have features related to a change in the crystal structures of the alloys (concentration fcc–bcc phase transition), their magnetic structures and percolation processes occurring in the two-phase fcc + bcc medium.  相似文献   

17.
The temperature (T = 77–420 K) dependences of the electrical resistivity and the magnetization, the magnetic-field (H ≤ 5 kOe) and pressure (P ≤ 7 GPa) dependences of the resistivity, the Hall coefficient, and the magnetization have been measured in the Zn0.1Cd0.9GeAs2 + 10 wt % MnAs composite with the Curie temperature T C = 310 K. The magnetoresistive effect has been observed at high hydrostatic pressure to 7 GPa. At nearly room temperature, the pressure dependence of the magnetization demonstrated a transition from the ferromagnetic to paramagnetic state at P ~ 3.2 GPa that was accompanied by the semiconductor–metal phase transition.  相似文献   

18.
The dependences of the electrical resistivity and the Hall coefficient of single-crystal p-InAs〈Mn〉 bulk samples with an acceptor concentration of about 1018 cm–3 on uniform pressure P = 4–6 GPa at T = 300 K in the region of impurity conduction are quantitatively analyzed. The anomalous Hall effect is shown to occur in p-InAs〈Mn〉. Its contribution is negative and correlates with the deionization of acceptors and an increase in the magnetic susceptibility.  相似文献   

19.
The dependences of the resistance of the layered quasi-one-dimensional semiconductor TiS3 on the direction and magnitude of the magnetic field B have been measured. The anisotropy and angular dependences of the magnetoresistance indicate the two-dimensional character of the conductivity at T < 100 K. Below T0 ≈ 50 K, the magnetoresistance for the directions of the field in the plane of the layers (ab plane) increases sharply, whereas the transverse magnetoresistance (Bc) becomes negative. The results confirm the possibility of an electron phase transition to a collective state at T0. The negative magnetoresistance (at Bc) below T0 is explained by the magnetic-field-induced suppression of two-dimensional weak localization. The positive magnetoresistance (at Bab) is explained by the effect of the magnetic field on the spectrum of electronic states.  相似文献   

20.
The dependences of the Hall coefficient R H (P) and resistivity ρ(P) of bulk n-ZnO crystals on hydrostatic pressure up to 8 GPa and quasi-hydrostatic pressure up to 25 GPa at T = 300 K have been measured. With an increase in pressure up to the polymorphic transition P pt ? 9 GPa, an exponential increase in R(P) and ρ(P) is observed, which is caused by the increase in the ionization energy of the shallow-energy donor center. At P > P pt, the resistivity decreases by several orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号