首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Magnetogravitational instability of an infinite homogeneous, viscous, thermally conducting, rotating plasma flowing through a porous medium has been studied with the help of relevant linearized perturbation equations, using the method of normal mode analysis. Rotation is taken parallel and perpendicular to the magnetic field for both, the longitudinal and the transverse modes of propagation. The joint influence of the various parameters do not, essentially, change the Jeans' criterion but modifies the same. The adiabatic velocity of sound is being replaced by the isothermal one due to the thermal conductivity. Porosity reduces the effects of both, the magnetic field and the rotation, in the transverse mode of propagation, whereas the rotation is effective only along the magnetic field for an inviscid plasma. The viscosity removes the effect of rotation in the transverse mode of propagation.  相似文献   

2.
The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion.  相似文献   

3.
An infinitely extending homogeneous, self-gravitating rotating magnetized plasma flowing through a porous medium has been considered under the influence of Finite Larmor Radius (FLR) and other transport phenomena. A general dispersion relation has been derived through the linearized perturbation equations. Longitudinal and transverse modes of propagation have been discussed for the rotation with axis parallel and perpendicular to the magnetic field. The joint influence, of the aforesaid parameters, does not essentially change the Jeans' criterion of instability but modifies the same. The adiabatic sonic speed has been replaced by the isothermal one due to the thermal conductivity. It is further observed that the FLR corrections have stabilizing effect for an inviscid, non-rotating plasma, in case of transverse propagation. Rotation decreases the Larmor radius, whereas the porosity reduces the effects of rotation, FLR, and the magnetic field. Viscosity removes the effects of both, the roation, and the FLR corrections.  相似文献   

4.
The problem of stability of self gravitating magnetized plasma in porous medium is studied incorporating electrical resistivity, thermal conduction and FLR corrections. Normal mode analysis is applied to derive the dispersion relation. Wave propagation is discussed for parallel and perpendicular directions to the magnetic field. Applying Routh Hurwitz Criterion the stability of the medium is discussed and it is found that Jeans' criterion determines the stability of the medium. Magnetic field, porosity and resistivity of the medium have no effect on Jeans' Criterion in longitudinal direction. For perpendicular direction, in case of resistive medium Jeans' expression remains unaffected by magnetic field but for perfectly conducting medium magnetic field modifies the Jeans' expression to show the stabilizing effect. Thermal conducitivity affects the sonic mode by making the process isothermal instead of adiabatic. Porosity of the medium is effective only in case of perpendicular direction to magnetic field for perfectly conducting plasma as it reduces the stabilizing effect of magnetic field. For longitudinal wave propagation, though FLR corrections have no effect on sonic mode but it changes the growth rate for Alfvén mode. For transverse wave propagation FLR corrections and porosity affect the Jeans' expression in case of nonviscous medium but viscosity of the medium removes the effect of FLR and porosity on Jeans' condition.  相似文献   

5.
The thermosolutal instability of a plasma is studied to include the effects of coriolis forces and the finiteness of ion Larmor Radius in the presence of transverse magnetic field. It is observed that the effect of rotation is destabilizing only in a typical case. However, the F. L. R. and stable solute gradient have stabilizing effects on stationary convection irrespective of the presence of coriolis forces.  相似文献   

6.
The magneto-gravitational instability of an infinite homogeneous, finitely conducting, viscous rotating plasma through porous medium is investigated in view of its relevance to certain stellar atmospheres. The dispersion relation has been obtained from the relevant linearized perturbation equations of the problem and it has been discussed in the case of rotation parallel and perpendicular to the direction of magnetic field separately. The longitudinal and transverse modes of wave propagation are discussed in each case of rotation. It is found that the combined effect of viscosity, finite conductivity, rotation and the medium porosity does not essentially change the Jeans' criterion of gravitational instability. It is also shown that for the propagation transverse to the direction of magnetic field. the finite conductivity destabilizes the wave number band which is stable in the limit of infinite conductivity when the medium is considered inviscid.  相似文献   

7.
The instability of a stratified rotating fluid layer through porous medium in the presence of an inhomogeneous magnetic field is investigated. For exponentially varying density and magnetic field variations, an eigenvalue solution has been obtained. The dispersion relation is obtained and discussed for both the stable and unstable stratifications separately. It is found, for non-porous medium, that for the stable mode of disturbance, the system is always stable, and for the unstable mode of disturbance, it is stabilized only under a certain condition for the Alfvèn velocity, rotation and the stratification parameter. In the latter case, both rotation and magnetic field are found to have a stabilizing effect on the growth rate. In the presence of porous medium, it is found, for real growth rate n, that the inhomogeneous magnetic field has always a stabilizing effect on the considered system. It is found also, for complex growth rate n, that the system is stable for the stable stratification case, while it is stable or unstable for the unstable case under a certain wavenumbers range depending on the Alfvèn velocity and the stratification parameter. The presence of the magnetic field is found to stabilize a certain wavenumbers band, whereas the system was unstable for all wavenumbers in the absence of the magnetic field. Also, the presence of porous medium is found to hide the stabilizing effect played by rotation on the considered system for non-porous medium, i.e., rotation does not have any significant effect on the stability criterion in this case.  相似文献   

8.
This paper deals with the gravitational instability of an infinite homogeneous viscous rotating plasma of finite electrical conductivity in the combined presence of effects of Hall currents, finite Larmor radius (FLR) and thermal conductivity. The ambient magnetic field is assumed to be uniform and acting along the vertical direction. Both longitudinal and transverse modes of wave propagation have been studied. It is shown that Jean's criterion determines the gravitational instability even in the presence of the effects of thermal conductivity, viscosity, finite electrical conductivity, FLR, rotation and Hall currents. Further it is found that while FLR, viscosity and rotation have a stabilizing influence, both the thermal and the electrical conductivities have a destabilizing influence on the gravitational instability of a plasma.  相似文献   

9.
The effect of variable gravitational field on thermal instability of a rotating fluid layer in the presence of magnetic field in porous medium is investigated. It is found that the system is stable when gravity is decreasing upwards. The principle of exchange of stability is valid in the absence of rotation and magnetic field when gravity increases upwards. In the stationary convection, rotation has stabilizing or destabilizing effect depending upon whether gravity is increasing or decreasing upwards. The medium permeability and magnetic field have stabilizing or destabilizing effect depending upon condition.  相似文献   

10.
Wave propagation in a rarefied two-component plasma immersed in a uniform constant magnetic field has been discussed wherein the plasma pressure is assumed to be anisotropic owing to finite Larmor radius effect. It is shown that, for propagation along the external magnetic field, there exist two modes of wave propagation, namely, the gravitational mode and the hydromagnetic mode. The former is found to be independent of the magnetic field and hence of the Larmor radius, while the latter is appreciably influenced by the finite Larmor radius. On the other hand, for transverse propagation, there are three modes of wave propagation viz. the ion-sound mode, the electron-sound mode and the electromagnetic mode. It is shown that only the lowfrequency ion-sound mode is affected by the finite Larmor radius.  相似文献   

11.
The effect of uniform rotation on the self gravitational instability of an infinite homogeneous magnetised gas particle medium in the presence of suspended particles is investigated. The equations of the problem are linearized and the general dispersion relation for such system is obtained. The rotation is assumed along two different directions and separate dispersion relation for each case is obtained. The dispersion relation for propagation parallel and perpendicular to the uniform magnetic field along with rotation is derived. The effect of suspended particles on the different modes of propagation is investigated. It is found that in presence of suspended particles, magnetic field, rotation and viscosity, Jeans' criterion determines the condition of gravitational instability of gas-particle medium.  相似文献   

12.
The problem of stability of a self-gravitating, infinite homogeneous gas in the presence of magnetic field is investigated. The medium is assumed electrically and thermally conducting. The effect of porosity, electrical conductivity, thermal conductivity and Hall current is investigated on the self-gravitating plasma flowing through porous medium. The relevant linearized equations of the problem are stated and dispersion relation is obtained. The effect of Hall current on the condition of the instability of the system is examined for both longitudinal and transverse mode of propagation and found that in longitudinal propagation Hall effect does not change the condition of instability but modifies the Alfvén wave mode. The stability of the system is discussed by applying Routh-Hurwitz criterion and it is found that Jeans criterion determines the stability of the system. Thermal conductivity and porosity have a destabilizing influence on the medium. The general condition for instability of the system is also derived.  相似文献   

13.
The gravitational instability of a two component plasma is studied to include the simultaneous effects of collisions, gyroviscosity, finite conductivity, viscosity and porosity of the medium within the framework of two-fluid theory. From linearized equations of the system, using normal mode analysis, the dispersion relations for parallel and perpendicular directions to the magnetic field are derived and discussed. For longitudinal wave propagation it is found that the value of critical JEANS' wave number increases with increasing density and decreasing temperature of the neutral component. For transverse wave propagation the value of critical JEANS' wave number depends on gyroviscosity, ALFVÉN number, ratio of sonic speeds and densities of the two component and porosity of the medium. It is observed that the effect of magnetic field and porosity is suppressed by finite condutivity of the plasma and similarly the effect of gyroviscosity is removed by viscosity from JEANS' expression of instability. For both the directions instability is produced when the velocity perturbations are considered parallel to wave vector. The damping effect is produced due to collisional frequency, permeability of the porous medium and viscosity. The density of the neutral component and porosity of the medium tends to destabilize the system while an increased value of FLR corrections leads the system towards stabilization.  相似文献   

14.
The effect of a strong longitudinal static electric field on the propagation and instability of transverse circularly polarised EM waves (left and right handed) in the presence of a static magnetic field along the direction of propagation in an InSb plasma has been studied under hot carrier conditions by a phenomenological approach. The results show the possibility of existence of wave instabilities for a wide range of system parameters. The growth rate decreases with the heating d.c. electric field and increases slightly with the static magnetic field.  相似文献   

15.
The electrodynamic instability of a self-gravitating dielectric fluid penetrated by a uniform axial electric field surrounded by a self-gravitating vacuum pervaded by a varying electric field is investigated. A general eigenvalue relation valid to all possible (symmetric and asymmetric) modes of perturbation for all (short and long) wavelengths is derived and discussed in detail. The model is gravitationally stable to the pure asymmetric disturbances modes while to symmetric modes it is as if the longitudinal wavenumber normalized with respect to the jet radius is equal to or greater than 1.0668 and vice versa. The axial electric fields pervaded interior and exterior to the cylinder are stabilizing for all disturbances modes according to some restrictions. The transverse varying electric field is purely stabilizing in the symmetric disturbance for all wavelengths, while it is stabilizing in the asymmetric disturbance under some restrictions. The electrodynamic force has a strong stabilizing influence in the symmetric mode and can suppress the gravitational instability above a certain value of the basic electric field.  相似文献   

16.
The thermosolutal instability of a plasma in porous medium is considered in the presence of finite Larmor radius effect. The finite Larmor radius, stable solute gradient and magnetic field introduce oscillatory modes in the systems which were nonexistent in their absence. For stationary convection, the finite Larmor radius and stable solute gradient have stabilizing effects on the thermosolutal instability in porous medium. In presence of finite Larmor radius effect, the medium permeability has a destabilizing (or stabilizing) effect and the magnetic field has a stabilizing (or destabilizing) effect under certain condition whereas in the absence of finite Larmor radius effect, the medium permeability and the magnetic field have destabilizing and stabilizing effects, respectively, on thermosolutal instability of a plasma in porous medium. The sufficient conditions for nonexistence of overstability are obtained.The financial assistance to Mr. Sunil in the form of Senior Research Fellowship of the Council of Scientific and Industrial Research (CSIR), New Delhi is gratefully acknowledged.  相似文献   

17.
Shahram Hosseinzadeh 《Optik》2012,123(11):1019-1021
In this paper the characteristic equation for the magnetoplasmonic cylindrical waveguide will be formulated and solved. The effect of cylinder radius and the static magnetic field on the propagation constant are investigated. It is seen that, despite the isotropic cylindrical wave guide, there is not pure TE and TM mode for the symmetric modes and there are two propagation mode. Numerical experiments shows that, there is not unique solution for the propagation constants, and propagation constants may depends on cylinder radius and the bias field. Reversing the DC field direction, does not show any change propagation constant and therefore does not exist Faraday rotation for this structure.  相似文献   

18.
Summary The thermosolutal instability of a rotating plasma in the presence of a uniform vertical magnetic field is studied to include the effects of Hall current. When the instability sets in as stationary convection for the case of no rotation, the Hall effects are found to be destabilizing. The stable solute gradient and rotation are found to have stabilizing effects. In the presence of rotation the Hall currents are found to be stabilizing forT 1>M(1+x)2. the case of overstability is also considered and it is shown that such solutions exist. The variation of the frequency with respect to the wave number at the neutral state is graphically shown. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

19.
薛文瑞  郭亚楠  张文梅 《中国物理 B》2010,19(1):17302-017302
In this paper, two kinds of modified surface plasmonic waveguides formed by nanometric parallel lines are proposed. The finite-difference frequency-domain method is used to study propagation properties of the fundamental mode supported by these surface plasmonic waveguide structures. Results show that the transverse magnetic field of the fundamental mode is mainly distributed in the face to face region formed by two rods. With the same geometrical parameters and the same working wavelength of 632.8~nm, in the case of rods with a triangular cross-section, the degree of localization of field is strong, i.e. the mode area is small, but the fraction of the modal power in the metal increases, so the effective index increases and the propagation length of the mode decreases. With the same geometrical parameters, relative to the case of a working wavelength of 632.8~nm, when working wavelength is large, the mode area of transverse magnetic field distribution is large, i.e. the degree of localization of field is weak, and the interaction of field and silver is weak too, then the effective index decreases, so the propagation length increases. The rounded radii of rods have a great influence on the performance of the surface plasmonic waveguides with rounded triangular cross-sections, but have little influence on the performance of surface plasmonic waveguides with rounded square cross-sections. Since the distribution of transverse magnetic field, effective index, propagation length and the mode area can be adjusted by the geometrical parameters, this kind of modified surface plasmonic waveguide can be applied to the field of photonic device integration and sensors.  相似文献   

20.
Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those modes whose magnetic-field perturbations are perpendicular to the ambient magnetic field, i.e., B 1 $\bot $ B 0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them (i.e., the whistler mode, pure Alfvén mode, firehose instability, and whistler instability), and the O-mode are affected by thermal anisotropies, since they satisfy the required condition $\mathbf{B}_{1}\bot \mathbf{B}_{0}$ . By contrast, the perpendicularly propagating X-mode and the modes derived from it (the pure transverse X-mode and Bernstein mode) show no such effect. In general, we note that the thermal anisotropy modifies the parallel propagating modes via the parallel acoustic effect, while it modifies the perpendicular propagating modes via the Larmor-radius effect. In oblique propagation for kinetic Alfvén waves, the thermal anisotropy affects the kinetic regime more than it affects the inertial regime. The generalized fast mode exhibits two distinct acoustic effects, one in the direction parallel to the ambient magnetic field and the other in the direction perpendicular to it. In the fast-mode instability, the magneto-sonic wave causes suppression of the firehose instability. We discuss all these propagation characteristics and present graphic illustrations. The threshold conditions for different instabilities are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号