首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous dispersions of mixed egg yolk phosphatidylcholine (PC) and poly(ethylene glycol) (PEG) modified distearoyl phosphatidylethanolamine (DSPE) were investigated with the purpose of determining shape, size, and conformation of the formed mixed micelles. The samples were prepared at a range of DSPEPEG to PC molar ratios ([DSPEPEG/PC] from 100:0 to 30:70) and with, respectively, DSPEPEG2000 and DSPEPEG5000, where 2000 and 5000 refer to the molar masses of the PEG chains. Particle shape and internal structure were studied using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The contrast of the micelles is different for X-rays and neutrons, and by combining SANS and SAXS, complementary information about the micelle structure was obtained. The detailed structure of the micelles was determined in a self-consistent way by fitting a model for the micelles to SANS and SAXS data simultaneously. In general, a model for the micelles with a hydrophobic core, surrounded by a dense hydrophilic layer that is again surrounded by a corona of PEG chains in the form of Gaussian random coils attached to the outer surface, is in good agreement with the scattering data. At high DSPEPEG contents, nearly spherical micelles are formed. As the PC content increases the micelles elongate, and at a DSPEPEG/PC ratio of 30:70, rodlike micelles longer than 1000 angstroms are formed. We demonstrate that by mixing DSPEPEG and PC a considerable latitude in controlling the particle shape is obtained. Our results indicate that the PEG chains in the corona are in a relatively unperturbed Gaussian random coil conformation even though the chains are far above the coil-coil overlap concentration and, therefore, interpenetrating. This observation in combination with the observed growth behavior questions that the "mushroom-brush"transition is the single dominating factor for determining the particle shape as assumed in previous theoretical work (Hristova, K.; Needham, D. Macromolecules 1995, 28, 991-1002).  相似文献   

2.
LiCl-induced changes in the micellar hydration and gelation characteristics of aqueous solutions of the two triblock copolymers F127 (EO(100)PO(70)EO(100)) and P123 (EO(20)PO(70)EO(20)) (where EO represents the ethylene oxide block and PO represents the propylene oxide block) have been studied by small-angle neutron scattering (SANS) and viscometry. The effect of LiCl was found to be significantly different from those observed for other alkali metal chloride salts such as NaCl and KCl. This can be explained on the basis of the complexation of hydrated Li(+) ions with the PEO chains in the micellar corona region. The interaction between the chains and the ions is more significant in the case F127 because of its larger PEO block size, and therefore, micelles of this copolymer show an enhanced degree of hydration in the presence of LiCl. The presence of the hydrated Li(+) ions in the micellar corona increases the amount of mechanically trapped water there and compensates more than the water molecules lost through the dehydration of the PEO chains in the presence of the Cl(-) ions. The enhancement in micellar hydration leads to a decrease in the minimum concentration required for the F127 solution to form a room-temperature cubic gel phase from 18% to 14%. Moreover, for both copolymers, the temperature range of stability of the cubic gel phase also increases with increasing LiCl concentration, presumably because of the ability of the Li(+) ions to reduce micellar dehydration with increasing temperature. Viscosity studies on a poly(ethylene glycol) (PEG) homopolymer with a size equivalent to that of the PEO block in F127 (4000 g/mol) also suggest that the dehydrating effect of the Cl(-) ion on the PEG chain is compensated by its interaction with the hydrated Li(+) ions.  相似文献   

3.
The phase behavior and structure of a four-component microemulsion system forming droplets with an oil core surrounded by the non-ionic C12E5 surfactant in water and "decorated" by long PEO chains using the block copolymer/surfactant Brij 700 has been studied. The surfactant-to-oil volume ratio, the coverage density of the droplets with decorating molecules, and the temperature were varied. For a surfactant-to-oil volume ratio of 2, the solutions form isotropic and clear solutions at room temperature, and the addition of Brij molecules stabilize the micelles: the transition to an opaque phase is shifted to higher temperatures as the surface coverage increases. At a surfactant-to-oil ratio of 1, the isotropic microemulsion phase is confined to a very narrow range of temperature, which location is shifted to increasing temperature, as the amount of Brij at the surface of the droplet is increased. For large surface coverages, the lower emulsification boundary varies roughly linearly with the surface coverage. The structure of the droplet phase was investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). For a surfactant-to-oil ratio of 2, the SANS data revealed a transition from rodlike to spherical particles when Brij molecules are added to the system, which induces a larger curvature of the surfactant film. For a surfactant-to-oil ratio of 1, the droplets are nearly spherical at all surface coverages. The intermicellar interactions effects become increasingly more pronounced as Brij is added, due to the introduction of the highly swollen corona. A quantitative analysis of some of the SAXS data was done using an advanced model based on Monte Carlo simulations. It demonstrates the strong chain-chain interactions within the corona and confirms the increased interparticle interactions, as the coverage density is increased.  相似文献   

4.
Both laser light scattering (LLS) and small-angle X-ray scattering (SAXS) were used to study the water-induced formation and structure of micelles and supramolecules of Pluronic P103 [(EO)17(PO)60(EO)17] in o-xylene, a selective solvent for the long middle block. In pure o-xylene, P103 molecules exist as unimer coils with an equivalent hard-sphere radius of 1.6 nm even at fairly high concentrations. Micelles with a PEO/water core and a PPO dominated corona were formed in the presence of water when the P103 concentration ≥0.046 g/mL. The size and structure of micelles have been studied as a function of solubilized water content Z (the molar ratio of water to EO units) in micelles. The micelles change from a somewhat open structure with some EO units either dangling out of the micellar core or being incorporated into neighboring micellar cores at low Z values to a flower-like structure with relatively sharp interface at high Z values. At low Z values (< about 2.9), micelles tend to have a structure with part of the poorly solvated PEO blocks present in the corona. With more water added to the core, the PEO blocks in the corona gradually entered into the core, and the PPO blocks backfolded to form loops. With increasing Z, the micellar core radius, Rc, and the hard-sphere volume fraction, ϕ, of micelles increased; the aggregation number, N, kept nearly a constant; but the hydrodynamic radius, 〈Rh0, and the corona thickness, Rs, decreased. At high Z values (> about 2.9), micelles have a flower-like structure with the two end PEO blocks belonging to the small micellar core. With increasing Z, the values of Rc, ϕ, and N increased, while Rs kept nearly a constant. In the concentrated regime (C > 0.30 g/mL), a stiff polymer network at a critical ϕ value of 0.49 was formed. The supramolecular structures with a face-center cubic packing, and a possible hexagonal packing at higher polymer concentrations (i.e. > 0.55 g/mL), were observed, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 889–900, 1998  相似文献   

5.
The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.  相似文献   

6.
We report on neutron spin-echo (NSE) measurements on deuterated styrene-protonated butadiene diblock copolymer micelles in deuterated n-decane to investigate the dynamics of butadiene blocks in the corona. Before the NSE measurements, we performed small-angle neutron-scattering (SANS) measurements on the micelles to evaluate the structure to give a basis for the discussion of the dynamics. In the SANS study, we have estimated the form factor P(Q) in terms of a hard-core-shell model from the direct evaluation without curve-fitting procedure while a more flexible core-shell model with the structure factor S(Q) gives a better fit to the observed data. The observed normalized intermediate scattering function I(Q,t)/I(Q,0) by NSE does not show the collective motions corresponding to the so-called breathing mode but rather single chain motion (Zimm modes) for both the 2 and 20 wt % micelle solutions. The Zimm decay rate Gamma(z) in the micelle solution is slow compared with that in the homopolymer solution. This slowing down is assigned to the effective high concentration in the corona. The differences in Gamma(z) between concentrated solutions and the 20% micellar solution are attributed to end-tethering effect of the corona chains on the core surface. The possible reasons why the breathing mode was not observed in the present micelle system are discussed on the basis of chain density in the corona.  相似文献   

7.
The structure of lysozyme-sodium dodecyl sulfate (SDS) complexes in solution is studied using small-angle X-ray scattering (SAXS). The SAXS data cannot be explained by the necklace and bead model for unfolded polypeptide chain interspersed with surfactant micelles. For the protein and surfactant concentrations used in the study, there is only marginal growth of SDS micelles as they complex with the protein. Being a small and rather rigid protein, lysozyme can penetrate the micellar core which is occupied by flexible and disordered paraffin chains and also the shell occupied by the hydrated head groups. A partially embedded swollen micellar model seems appropriate and describes well the scattering data. The SAXS intensity profiles are analyzed by considering the change in the electron scattering length density of the micellar core and shell due to complexation with protein and treating the intermicellar interaction using rescaled mean spherical approximation (RMSA) for charged spheres.  相似文献   

8.
The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D(2)O/H(2)O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D(2)O solvent composition, which is much higher than the expected value of 17% D(2)O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pederson's block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.  相似文献   

9.
Apparent specific densities of aqueous solutions of the diblock copolymers C18(EO)100, C18(EO)20, and (EO)92(BO)18 and the triblock copolymers (EO)25(PO)40(EO)25 and (EO)21(PO)47(EO)21 in the micellar state have been measured over a temperature range from 10 to 90 degrees C at concentrations between 1% and 5%, using an oscillating tube densitometer. From these measurements, apparent specific volumes of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(butylene oxide) (PBO), and octadecane in the micellar state have been determined. The composition of the block copolymers was checked by NMR spectroscopy. Results were compared with published data for the polymers and bulk values for octadecane, respectively. The apparent specific density of PEO chains in the dissolved state was also measured for PEG4600 solutions at different concentrations and compared with results in the micellar state. The results presented in the paper are crucial in connection with analysis and modeling of small-angle X-ray scattering (SAXS) data from polymer and block copolymer micellar systems. PEO and PPO have a relatively low apparent partial specific volume in water at low temperatures. It is associated with water molecules making strong hydrogen bonds with the oxygen atoms on the polymer backbone. These water molecules gradually become disordered when the temperature is increased and the polymer apparent specific volume increases. For PBO in the micellar cores of PBO-PEO block copolymer micelles and in PNiPAM microgels, pronounced temperature dependence with the same origin is also found. The application of the derived results for the apparent specific volume of PEO for deriving contrast factors is demonstrated and the results are used in the analysis of SAXS data for semidilute solutions of PEG4600 in a broad temperature range.  相似文献   

10.
We have used small-angle x-ray scattering (SAXS), and small-angle neutron scattering (SANS) to study the micelle structure of a polystyrene-block-poly(ethene-co-butene)-block-polystyrene triblock copolymer in dilute - semidilute solutions in solvents selective for either the outer styrene block (dioxane) or for the middle block (heptane or tetradecane). Measurements of equilibrium structure factors showed that micelles were formed in both types of selective solvents. In the case of dioxane, the micelles are isolated whereas in the case of heptane or tetradecane, a bridged micellar structure may be formed at higher copolymer concentrations. In both cases we observed an ordered cubic structure of insoluble domains (micellar cores) at high concentrations (> 8 %). The micellar scattering function was fit to the Percus-Yevick interacting hard-sphere model. The temperature dependence of the core radius, the hard-sphere interaction radius and the volume fraction of hard spheres were obtained. We also used synchrotron-based time-resolved SAXS to examine the kinetics of ordering of the micelles on a cubic lattice for many different temperature jumps into the ordered cubic phase starting from the disordered micellar fluid phase in different solvents at different concentrations. The time evolution of the structure changes was determined by fitting the data with Gaussians to describe the structure factor of the ordered Bragg peaks and the Percus-Yevick structure factor was used to describe the micellar fluid. The time dependence of the peak intensities and widths as well as of the micellar parameters will be presented. The results showing the kinetics of the transformation from the fluid to the ordered phase were analyzed using the Mehl-Johnson-Avrami theory of nucleation.  相似文献   

11.
The phase behavior and self-assembled structures of perfluoroalkyl sulfonamide ethoxylate, C8F17SO2N(C3H7)(CH2CH2O)20H (abbreviated as C8F 17EO20), a nonionic fluorocarbon surfactant in an aqueous system, has been investigated by the small-angle X-ray scattering (SAXS) technique. The C8F17EO20 forms micelles and different liquid crystal phases depending on the temperature and composition. The fluorocarbon micellar structure induced by temperature or composition change and added fluorocarbon cosurfactant has been systematically studied. The SAXS data were analyzed by the indirect Fourier transformation (IFT) and the generalized indirect Fourier transformation (GIFT) depending on the volume fraction of the surfactant and complemented by plausible model calculations. The C8F17EO20 forms spherical type micelles above critical micelle concentration (cmc) in the dilute region. The micelle tends to grow with temperature; however, the growth is not significant on changing temperature from 15-75 degrees C, which is attributed to the higher clouding temperature of the surfactant (>100 degrees C). On the other hand, the micellar structure (shape and size) is apparently unaffected by composition (1-25 wt %) at 25 degrees C. Nevertheless, addition of fluorocarbon cosurfactant of structure C8F17SO2N(C3H7)(CH2CH2O)H (abbreviated as C8F17EO1) to the semidilute solution of C8F17EO20 (25 wt %) favors micellar growth, which finally leads to the formation of viscoelastic wormlike micelles, as confirmed by rheometry and supported by SAXS. The onset sphere-to-wormlike transition in the structure of micelles in the C8F17EO20/water/C8F17EO1 system is due to the fact that the C8F17EO1 tends to go to the surfactant palisade layer so that the critical packing parameter increases due to a decrease in the effective cross-sectional area of the headgroup. As a result, spherical micelles grow into a cylinder, which after a certain concentration entangle to form a rigid network structure of wormlike micelles.  相似文献   

12.
13.
14.
The temperature dependence of the micelle structures formed by poly(styrene-b-isoprene) (SI) diblock copolymers in the selective solvents diethyl phthalate (DEP) and tetradecane (C14), which are selective for the PS and PI blocks, respectively, have been investigated by small angle neutron scattering (SANS). Two nearly symmetric SI diblock copolymers, one with a perdeuterated PS block and the other with a perdeuterated PI block, were examined in both DEP and C14. The SANS scattering length density of the solvent was matched closely to either the core or the corona block. The resulting core and corona contrast data were fitted with a detailed model developed by Pedersen and co-workers. The fits provide quantitative information on micellar characteristics such as aggregation number, core size, overall size, solvent fraction in the core, and corona thickness. As temperature increases, the solvent selectivity decreases, leading to substantial solvent swelling of the core and a decrease in the aggregation number and core size. Both core and corona chains are able to relax their conformations near the critical micelle temperature due to a decrease in the interfacial tension, even though the corona chains are always under good solvent conditions.  相似文献   

15.
Small-angle neutron and X-ray scattering are techniques, which are frequently used for studying the structure and interactions of block copolymer micelles. Recent developments of models for the analysis of small-angle scattering data are reviewed. The most recent models, based on Monte Carlo simulations, are able to provide information on shape, aggregation number, polydispersity, core size, core solvation, corona shape/size, and on the interactions between the chains in the corona.  相似文献   

16.
We previously reported the water-induced micelle formation of copoly(oxyethylene-oxy-propylene-oxyethylene), Pluronic L64, in o-xylene. The micellar properties could be controlled by varying the water to EO ratio (Z) in micelles. in micelles. In this paper, laser light scattering, transient electric birefringence (TEB), and synchrotron small-angle x-ray scattering (SAXS) were used to study the micellar structure at different Z values. Both TEB and SAXS results further confirmed the micellar shape transition from that of a sphere to a nonspherical shape. A comparison between TEB and dynamic light-scattering results as well as the SAXS experiments showed an ellipsoidal shape for micelles when Z > 1.3 with the oblate being the more reasonable form for fitting all the experimental parameters. The degree of asymmetry appeared to be not high. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using small-angle X-ray scattering and dynamic light scattering confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles.  相似文献   

18.
Polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer chains form aggregates with bimodal distribution in toluene. The introduction of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) chains leads to the formation of mixed micellar cluster due to the hydrogen-bonding complexation between PAA and PEO. By using laser light scattering and transmission electron microscopy, we have investigated the structural evolution of the mixed micellar cluster. As the standing time increases, the cluster split into regular complex micelles composed of PS-b-PAA and PS-b-PEO chains. Our results reveal that the hydrogen-bonding complexation between PAA and PEO in the core and the repulsion between PS chains in the corona as a function of the molar ratio (r) of PEO to PAA manipulate the evolution.  相似文献   

19.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

20.
We present here oil-in-water microemulsions stabilized by charged diblock copolymers alone, along with their structural characterization by small-angle neutron scattering measurements. They consist of swollen spherical micelles containing small amounts of oil in their core, which is surrounded by a corona of stretched polyelectrolyte chains. Structural changes, including core size variations, are evidenced when using a cosurfactant, or upon addition of salt, through a contraction of the charged corona. Attempts to relate the micellar structure to the individual copolymer characteristics are also presented, and show that the size of the hydrophobic block mainly determines that of the micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号