首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The potential of capillary electrophoresis (CE) for the separation of peptides has been extensively demonstrated in the last decade. Their correct characterization and sequenciation is a difficult task that can be accomplished using CE-mass spectrometry (CE-MS). An important limitation of CE-MS is the buffer choice since it should provide an adequate CE separation without ruining the MS signal. In this work, a new strategy is used to help to solve this limitation based on the combination of two different methodologies. Namely, an ab initio semiempirical model that relates electrophoretic behavior of peptides to their sequence is first used to obtain in a fast and easy way adequate CE buffers compatible with MS analysis. Next, CE-MS is used to separate and characterize peptides via the determination of their relative molecular masses. The usefulness of this procedure is demonstrated analyzing in a single CE-MS run a group of 10 standard peptides of very different nature (i.e., relative molecular masses ranging from 132 to 1037 and isoelectric points ranging from 5.69 to 10.62). It is concluded that the use of this strategy can help to overcome the buffer limitation in CE-MS.  相似文献   

2.
To simplify capillary electrophoresis-mass spectrometry (CE-MS) operation, a background electrolyte (BGE) containing a polymer additive is introduced that allows the analysis of peptides and protein mixtures in underivatized fused-silica capillaries without any pretreatment, thereby increasing throughput. The most important characteristic of these polymer additives is that they do not significantly suppress the signals of the proteins and peptides under electrospray ionization, thereby allowing them to be used as an additive to common BGEs that are used for CE-MS analysis of peptide and protein mixtures. In addition, because the fused-silica capillary inner wall is continuously coated with the polymer additive, migration irreproducibility, due to the degradation of the capillary inner wall coating, under CE-MS is minimized. High sensitivity of detection, migration reproducibility, and ease of fabrication allow CE-MS analyses that require long analysis time, such as (CE-MS/MS)n, to be performed with ease. The utility of this background electrolyte has been demonstrated for the analysis of complex protein digests and intact proteins.  相似文献   

3.
梁玉  张丽华  张玉奎 《色谱》2020,38(10):1117-1124
蛋白质组学研究在生物学、精准医学等方面发挥着重要的作用。然而研究面临的巨大挑战来自生物样品的复杂性,因此在质谱(MS)鉴定技术不断革新的同时,发展分离技术以降低样品复杂度尤为重要。毛细管电泳(CE)技术具有上样体积小、分离效率高、分离速度快等优势,其与质谱的联用在蛋白质组学研究中越来越受到关注。低流速鞘流液和无鞘流液接口的发展及商品化推动了CE-MS技术的发展。目前毛细管区带电泳(CZE)、毛细管等电聚焦(CIEF)、毛细管电色谱(CEC)等分离模式已与质谱联用,其中CZE-MS应用最广泛。目前被广泛采用的蛋白质组学研究策略主要是基于酶解肽段分离鉴定的"自下而上(bottom-up)"策略。首先,CE-MS技术对酶解肽段的检测灵敏度高达1 zmol,已成功应用于单细胞蛋白质组学;其次,毛细管电泳技术与反相液相色谱互补,为疏水性质相近的肽段(尤其是翻译后修饰肽段)的分离鉴定提供了新的途径。基于整体蛋白质分离鉴定的自上而下"top-down"策略可以直接获得更精准、更完整的蛋白质信息。CE技术在蛋白质大分子的分离方面具有分离效率高、回收率高的优势,其与质谱的联用提高了整体蛋白质的鉴定灵敏度和覆盖度。非变性质谱(native MS)是一种在近生理条件下从完整蛋白质复合物水平上进行分析的质谱技术。CE与非变性质谱联用已被尝试用于蛋白质复合体的分离鉴定。该文引用了与CE-MS和蛋白质组学应用相关的93篇文献,综述了以上介绍的CE-MS的研究进展以及在蛋白质组学分析中的应用优势,并总结和展望了其应用前景。  相似文献   

4.
Yoo C  Pal M  Miller FR  Barder TJ  Huber C  Lubman DM 《Electrophoresis》2006,27(11):2126-2138
A method is developed toward high sequence coverage of proteins isolated from human breast cancer MCF10 cell lines using a 2-D liquid separations. Monolithic-capillary columns prepared by copolymerizing styrene with divinylbenzene are used to achieve high-resolution separation of peptides from protein digests. This separation is performed with minimal sample preparation directly from the 2-D liquid fractionation of the cell lysate. The monolithic column separation is directly interfaced to ESI-TOF MS to obtain a peptide map. The protein digests were also analyzed by MALDI-TOF MS and an accurate M(r) of the intact protein was obtained using an HPLC-ESI-TOF MS. The result is that these techniques provide complementary information where nearly complete sequence coverage of the protein is obtained and can be compared to the experimental M(r) value. The high sequence coverage provides information on isoforms and other post-translational modifications that would not be available from methods that result in low sequence coverage. The results from the use of monolithic columns are compared to that obtained by CE-MS. The monolithic column separations provide a rugged and highly reproducible method for separating protein digests prior to MS analysis and is suited to confidently identify biomarkers associated with cancer progression.  相似文献   

5.
In this report, we present the use of CE-MS as complement to RP separation for the identification of novel angiotensin-converting enzyme-inhibitory (ACEI) peptides from a complex milk protein hydrolysate. As preliminary step, fast protein LC (FPLC) was used to isolate the different casein fractions from raw ovine milk. Enzymatic hydrolysis of these fractions was performed by using proteolytic enzymes of gastrointestinal origin. The most active hydrolysate, corresponding to kappa-casein hydrolyzed with pepsin, chymotrypsin, and trypsin, was fractionated by RP-HPLC and the peptides contained in the active fractions were sequenced by CE coupled to IT-MS (CE-MS). The use of CE-MS allowed the identification of short peptides with ACEI activity included in the scarcely retained fraction obtained by semipreparative RP-HPLC. Among the identified peptides, those with hydrophobic or positively charged residues at the C-terminal tripeptide were chemically synthesized to determine their ACEI activity. This procedure allowed us to identify four novel potent ACEI peptides from kappa-casein with sequences IAK, YQQRPVA, WQVLPNAVPAK, and HPHPHLSF. These active sequences could be obtained by enzymatic hydrolysis either of the individual kappa-casein fraction or the total casein fraction from ovine milk.  相似文献   

6.
Erny GL  Cifuentes A 《Electrophoresis》2007,28(9):1335-1344
It has been demonstrated that CE-MS is a very useful hyphenated technique for proteomic studies. However, the huge amount of data stored in a single CE-MS run makes it necessary to account with procedures able to extract all the relevant information made available by CE-MS. In this work, we present a new and easy approach capable of generating a simplified 2-D map from CE-MS raw data. This new approach provides the automatic detection and characterization of the most abundant ions from the CE-MS data including their mass-to-charge (m/z) values, ion intensities and analysis times. It is demonstrated that visualization of CE-MS data in this simplified 2-D format allows: (i) an easy and simultaneous visual inspection of large datasets, (ii) an immediate perception of relevant differences in closely related samples, (iii) a rapid monitoring of data quality levels in different samples, and (iv) a fast discrimination between comigrating polypeptides and ESI-MS fragmentation ions. The strategy proposed in this work does not rely on an excellent mass accuracy for peak detection and filtering, since MS values obtained from an IT analyzer are used. Moreover, the methodology developed works directly with the CE-MS raw data, without interference by the user, giving simultaneously a simplified 2-D map and a much easier and more complete data evaluation. Besides, this procedure can easily be implemented in any CE-MS laboratory. The usefulness of this approach is validated by studying the very similar trypsin digests from bovine, rabbit and horse cytochrome c. It is demonstrated that this simplified 2-D approach allows specific markers for each species to be obtained in a fast and simple way.  相似文献   

7.
Synthetic cross-linking reagents, such as 3,3′-dithiobis(sulfosuccinimidyl propionate), DTSSP, can react with sidechains of amino acids that are within close proximity. Identification of cross-linked residues provides insight into the folded structures of proteins. However, analysis of proteolytic digests of proteins cross-linked with commercially available DTSSP is difficult because many ions cannot be attributed to reported reactions of DTSSP. To better understand the reactivity of DTSSP, products from the reaction of DTSSP with several model peptides were analyzed by HPLC electrospray ionization mass spectrometry (ESIMS). Several products not previously reported were identified. Sources for these unexpected products were traced to reaction of DTSSP with contaminant ammonium ions in the buffer, to reaction of contaminants present in the commercial DTSSP reagent, and to reactivity of DTSSP with serine and tyrosine residues. In addition, the collision-induced-dissociation (CID) of peptides modified by DTSSP was investigated. These results showed that certain DTSSP-peptide adducts easily undergo in-source fragmentation to give additional unexpected ions. This study of the reactions of DTSSP with model peptides has revealed the major types of ions that are likely to be found in proteolytic digests of proteins cross-linked with DTSSP, thereby facilitating identification of the cross-linked residues that can provide information about the three-dimensional structures of folded proteins.  相似文献   

8.
Capillary electrophoresis (CE) mass spectrometry (MS), with its ability to separate compounds present in extremely small volume samples rapidly, with high separation efficiency, and with compound identification capability based on molecular weight, is an extremely valuable analytical technique for the analysis of complex biological mixtures. The highest sensitivities and separation efficiencies are usually achieved by using narrow capillaries (5-50 micro m i.d.) and by using sheathless CE-to-MS interfaces. The difficulties in CE-to-MS interfacing and the limited loadability of these narrow columns, however, have prevented CE-MS from becoming a widely used analytical technique. To remedy these limitations, several CE-MS interfacing techniques have recently been introduced. While electrospray ionization is the most commonly used ionization technique for interfacing CE-to-MS, matrix assisted laser desorption ionization has also been used, using both on-line and off-line techniques. Moreover, the high concentration detection limit of CE has been addressed by development of several sample concentration and sample focusing methods. In addition, a wide variety of techniques such as capillary zone electrophoresis, capillary isoelectric focusing, and on-column transient isotachophoresis have now been interfaced to MS. These advances have resulted in a rapid increase in the use of CE-MS in the analysis of complex biological mixtures. CE-MS has now been successfully applied to the analysis of a wide variety of compounds including amino acids, protein digests, protein mixtures, single cells, oligonucleotides, and various small molecules relevant to the pharmaceutical industry.  相似文献   

9.
In this work, a new capillary electrophoresis-mass spectrometry (CE-MS) procedure is developed to analyze proteins in Spirulina platensis microalgae. It is demonstrated that a fine optimization of several separation parameters is essential in order to achieve suitable CE-MS analysis of these proteins in natural extracts from microalgae. Namely, optimization of the composition of the separation buffer, electrospray conditions, and washing routine between runs are required in order to obtain reliable and reproducible CE-MS analyses of the main proteins found in this microalga (namely, allophycocyanin-alpha chain, allophycocyanin-beta, c-phycocyanin-alpha, and c-phycocyanin-beta). The relative molecular mass of these biopolymers is determined using two different MS instruments coupled to CE, i.e., CE-ion trap-MS and CE-time of flight-MS (CE-TOF-MS). A comparison between the results obtained with both instruments is carried out. The high resolution of the TOF-MS enables the distinction of small modifications in proteins and, thus, a more accurate mass determination. Interestingly, molecular mass values obtained by both CE-MS procedures agree very well while these experimental values are only in partial agreement with those theoretically expected (i.e., genetically derived masses). Some protein modifications due to amino acids exchange induced by nucleotide codon mutations are proposed to explain this difference.  相似文献   

10.
Capillary electrophoresis-mass spectrometry in food analysis   总被引:1,自引:0,他引:1  
Simó C  Barbas C  Cifuentes A 《Electrophoresis》2005,26(7-8):1306-1318
This work provides an updated overview (including works published till June 2004) on the principal applications of capillary electrophoresis-mass spectrometry (CE-MS) together with their main advantages and drawbacks in food science. Thus, analysis of amino acids, peptides, proteins, carbohydrates, or polyphenols by CE-MS in different foods is reviewed. Also, other natural compounds (e.g., alkaloids) and toxins analyzed by CE-MS in foods are revised. Moreover, exogenous substances with a potential risk for human health (e.g., pesticides, drugs) detected in foods by CE-MS are included in this work. The usefulness of CE-MS for food analysis and the information that this coupling can provide in terms of processing, composition, authenticity, quality, or safety of foods is also discussed.  相似文献   

11.
In this study, methodology was developed for on-line and miniaturized enzymatic digestion with liquid chromatographic (LC) separation and mass spectrometric (MS) detection. A packed capillary LC-MS system was combined with on-line trypsin cleavage of a model protein, lactate dehydrogenase, to provide an efficient system for peptide mapping. The protein was injected onto an enzymatic capillary reactor and the resulting peptides were efficiently trapped on a capillary trapping column. Different trapping columns were evaluated to achieve a high binding capacity for the peptides generated in the enzyme reactor. The peptides were further eluted from the pre-column and separated on an analytical capillary column by a buffer more suitable for the following an electrospray ionisation (ESI) MS process. An important aspect of the on-line approach was the desalting of peptides performed in the trapping column to avoid detrimental signal suppression in the ESI process. The developed on-line system was finally compared to a classical digestion in solution, with reference to peptide sequence coverage and sensitivity. It was shown that the on-line system gave more than 100% higher peptide sequence coverage than traditional digestion methods.  相似文献   

12.
CE and hydrogen-deuterium (H/D) exchange MS are useful tools in the analysis and characterisation of peptides. This study reports the facile coupling of these tools in the H/D exchange CE-MS analysis of model and pharmaceutically important peptides, using a sheath flow interface. The peptides varied in mass from 556 (leucine enkephalin) to 1620 Da (bombesin), and in charge state from 0.33 (leucine enkephalin) to 3.0 (substance P). The application of a BGE composed of ammonium formate buffer (25 mM, pD 3.5 in D(2)O (>98% D atom)), a sheath liquid composed of formic acid (0.25% v/v in D(2)O) and ACN (30:70 v/v), and dissolving the samples in a mixture of ACN/D(2)O (50:50 v/v) facilitates complete H/D exchange. Because of complete H/D exchange the ESI mass spectra produced are easy to interpret and comparable to those obtained from LC-MS analysis. The CE-H/D-MS approach has the advantage of requiring lower volumes of deuterated solvents. The b- and y-series fragments produced by using in-source decomposition correspond to those predicted. With the peptides studied, the complete exchange H/D exchange observed with both the molecular and fragment ions helps to confirm both amino acid composition and sequence.  相似文献   

13.
In this study, we use capillary electrophoresis-mass spectrometry (CE-MS) for the identification of bioactive peptides in hypoallergenic infant milk formulas (IF), which are complex bovine milk protein hydrolysates. A sample clean-up pretreatment with a citrate buffer containing dithiothreitol and urea followed by solid-phase extraction (SPE) with different reversed-phase commercial cartridges was investigated to achieve optimum detection sensitivity in CE-MS. SPE with C18, StrataX and Oasis HLB cartridges allowed detection of the largest number of low molecular mass components, but combination of C18 and StrataX results was enough to achieve an excellent coverage of the studied IF. The monoisotopic molecular mass values of the low molecular mass components obtained by capillary electrophoresis ion-trap mass spectrometry (CE-IT-MS) allowed the tentative identification of nine bioactive sequences. Only the identification of five of them could be confirmed when accurate mass measurements were performed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS), namely LKP, IPY, ALPM, PGPIHN and VAGTWY, which were reported to present angiotensin-converting enzyme (ACE) inhibitory and antimicrobial activity (only VAGTWY).  相似文献   

14.
Erny GL  Marina ML  Cifuentes A 《Electrophoresis》2007,28(22):4192-4201
In this work, an original CE-MS method has been developed to analyze the complex zein protein fractions from maize. A thorough optimization of: (i) zein protein extraction, (ii) CE separation, and (iii) electrospray-MS (ESI-MS) detection is carried out in order to obtain highly informative CE-MS profiles of this fraction. The developed CE-MS method provides good separation of multiple zein proteins based on their electrophoretic mobilities as well as adequate characterization of these proteins based on their M(r). Zein proteins with small M(r) differences (below 100 Da) were easily separated and successfully analyzed by CE-MS. Thus, apart of the so-called 15-kDa-beta-zein and 16-kDa-gamma-zein, which are demonstrated to be formed by a heterogeneous group of proteins, numerous alpha-zeins belonging to the 19- and 22-kDa fraction were also identified for the first time in this work. The usefulness of this CE-MS method was corroborated by comparing the zein-protein fingerprints of various maize lines including transgenic and their corresponding nontransgenic isogenic lines cultivated under the same conditions.  相似文献   

15.
The objective of the work presented in this paper was to test the concept that tryptic peptides may be used as analytical surrogates of the protein from which they were derived. Proteins in complex mixtures were digested with trypsin and classes of peptide fragments selected by affinity chromatography, lectin columns were used in this case. Affinity selected peptide mixtures were directly transferred to a high-resolution reversed-phase chromatography column and further resolved into fractions that were collected and subjected to matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The presence of specific proteins was determined by identification of signature peptides in the mass spectra. Data are also presented that suggest proteins may be quantified as their signature peptides by using isotopically labeled internal standards. Isotope ratios of peptides were determined by MALDI mass spectrometry and used to determine the concentration of a peptide relative to that of the labeled internal standard. Peptides in tryptic digests were labeled by acetylation with acetyl N-hydroxysuccinimide while internal standard peptides were labeled with the trideuteroacetylated analogue. Advantages of this approach are that (i) it is easier to separate peptides than proteins, (ii) native structure of the protein does not have to be maintained during the analysis, (iii) structural variants do not interfere and (iv) putative proteins suggested from DNA databases can be recognized by using a signature peptide probe.  相似文献   

16.
The applicability of an approach to establish the sequence of oligopeptides involving on-probe-tip enzymatic fragmentation and subsequent direct fast atom bombardment (FAB) mass spectrometry (MS) and FAB-MS/MS of the subpeptide mixture was tested using two model peptides consisting of 19 and 25 amino acid residues. The method was found to be both time and sample sparing and flexible enough to use even subsequent digests, if necessary, with enzymes of different specificity. It provided in both cases complete information, not only for the sequence of enzymic fragments but also for their order in the original oligopeptide. Consequently, this approach to the sequence analysis of oligopeptides can be a method of choice when the FAB-MS/MS technique itself is unsuitable for obtaining detailed structural information. The method seems to be applicable to enzymically digestible peptides with an upper mass limit of about 3500.  相似文献   

17.
Glycation is a non‐enzymatic reaction of protein amino and guanidino groups with reducing sugars or dicarbonyl products of their oxidative degradation. Modification of arginine residues by dicarbonyls such as glyoxal and methylglyoxal results in formation of advanced glycation end‐products (AGEs). In mammals, these modifications impact in diabetes mellitus, uremia, atherosclerosis and ageing. However, due to the low abundance of individual AGE‐peptides in enzymatic digests, these species cannot be efficiently detected by LC‐ESI‐MS‐based data‐dependent acquisition (DDA) experiments. Here we report an analytical workflow that overcomes this limitation. We describe fragmentation patterns of synthetic AGE‐peptides and assignment of modification‐specific signals required for unambiguous structure retrieval. Most intense signals were those corresponding to unique fragment ions with m/z 152.1 and 166.1, observed in the tandem mass spectra of peptides, containing glyoxal‐ and methylglyoxal‐derived hydroimidazolone AGEs, respectively. To detect such peptides, specific and sensitive precursor ion scanning methods were established for these signals. Further, these precursor ion scans were incorporated in conventional bottom‐up proteomic approach based on data‐dependent acquisition (DDA) LC‐MS/MS experiments. The method was successfully applied for the analysis of human serum albumin (HSA) and human plasma protein tryptic digest with subsequent structure confirmation by targeted LC‐MS/MS (DDA). Altogether 44 hydroimidazolone‐ and dihydroxyimidazolidine‐derived peptides representing 42 AGE‐modified proteins were identified in plasma digests obtained from type 2 diabetes mellitus (T2DM) patients. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We demonstrate that magnetic mesocellular carbon foams (Mag-MCF-C) can be effectively used for enrichment and desalting of protein digests or peptides in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The large mesocellular pores and surface area of Mag-MCF-C are likely to mainly contribute to high efficiency in enrichment and desalting of protein digests. The magnetic property of Mag-MCF-C enabled easy and simple enrichment and desalting process comprising adsorption, washing, and separation steps by using an external magnet. Following elution from Mag-MCF-C by using a matrix solution (CHCA in 70% ACN/0.1% TFA), the peptides were subjected to MALDI-MS analysis. As a result, MALDI mass spectra of peptides or tryptic protein digests were distinct even at a peptide concentration as low as 50 pM. The use of Mag-MCF-C resulted in significantly improved sequence coverage for protein identification when compared to other conventional methods. Mag-MCF-C will find applications in mass spectrometric analysis of low abundance peptides or protein digests with high sensitivity.  相似文献   

19.
Matrix-assisted laser/desorption ionization (MALDI) mass-spectrometric imaging (MSI), also known as MALDI imaging, is a powerful technique for mapping biological molecules such as endogenous proteins and peptides in human skin tissue sections. A few groups have endeavored to apply MALDI-MSI to the field of skin research; however, a comprehensive article dealing with skin tissue sections and the application of various matrices and enzymes is not available. Our aim is to present a multiplex method, based on MALDI-MSI, to obtain the maximum information from skin tissue sections. Various matrices were applied to skin tissue sections: (1) 9-aminoacridine for imaging metabolites in negative ion mode; (2) sinapinic acid to obtain protein distributions; (3) α-cyano-4-hydroxycinnamic acid subsequent to on-tissue enzymatic digestion by trypsin, elastase, and pepsin, respectively, to localize the resulting peptides. Notably, substantial amounts of data were generated from the distributions retrieved for all matrices applied. Several primary metabolites, e.g. ATP, were localized and subsequently identified by on-tissue postsource decay measurements. Furthermore, maps of proteins and peptides derived from on-tissue digests were generated. Identification of peptides was achieved by elution with different solvents, mixing with α-cyano-4-hydroxycinnamic acid, and subsequent tandem mass spectrometry (MS/MS) measurements, thereby avoiding on-tissue MS/MS measurements. Highly abundant peptides were identified, allowing their use as internal calibrants in future MALDI-MSI analyses of human skin tissue sections. Elastin as an endogenous skin protein was identified only by use of elastase, showing the high potential of alternative enzymes. The results show the versatility of MALDI-MSI in the field of skin research. This article containing a methodological perspective depicts the basics for a comprehensive comparison of various skin states.
Figure
Matrix-assisted laser/desorption ionization (MALDI) mass-spectrometric imaging (MSI), also known as MALDI imaging, is a powerful technique for mapping biological molecules in human skin tissue sections. In this body of work, a multiplex method, based on MALDI-MSI, is presented to obtain maximum information from skin tissue sections. Therefore, various matrices were applied to skin tissue sections: (1) 9-aminoacridine (9-AA) for imaging small molecules in negative ion mode; (2) sinapinic acid (SA) to obtain protein distributions; (3) α-cyano-4-hydroxycinnamic acid (α-HCHA) subsequent to on-tissue enzymatic digestion by trypsin, elastase, and pepsin, respectively, to localize the resulting peptides. Of note, identification of metabolites was achieved by post-source decay (PSD) MALDI, and proteins were identified subsequent to enzymatic digestion via the resulting peptides which were eluted from the skin tissue section and afterwards analyzed with use of a tandem time-of-flight (ToF) mass spectrometer. The application of alternative enzymes, such as pepsin and elastase, is highlighted within this article  相似文献   

20.
High mass-resolving power has been shown to be useful for studying the conformational dynamics of proteins by hydrogen/deuterium (H/D) exchange. A computer algorithm was developed that automatically identifies peptides and their extent of deuterium incorporation from H/D exchange mass spectra of enzymatic digests or fragment ions produced by collisionally induced dissociation (CID) or electron capture dissociation (ECD). The computer algorithm compares measured and calculated isotopic distributions and uses a fast calculation of isotopic distributions using the fast Fourier transform (FFT). The algorithm facilitates rapid and automated analysis of H/D exchange mass spectra suitable for high-throughput approaches to the study of peptide and protein structures. The algorithm also makes the identification independent on comparisons with undeuterated control samples. The applicability of the algorithm was demonstrated on simulated isotopic distributions as well as on experimental data, such as Fourier transform ion cyclotron resonance (FTICR) mass spectra of myoglobin peptic digests, and CID and ECD spectra of substance P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号