首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Langevin equation is universally applied to describe noise in physical systems of all kinds. To derive it, rather than postulate it, one has to introduce a noise source such as an environment or "reservoir". The solution requires that at some initial time the reservoir is in equilibrium and uncorrelated with the system. This is unphysical and, moreover, in the quantum mechanical case leads to inconsistencies. The way to overcome this anomaly is to consider the equilibrium of system and noise source combined. Then the resulting time-dependent equations for the correlation of various operators can be given. To find out whether they can be reproduced by a Langevin equation, the result is applied to the explicitly solvable system of a harmonic oscillator in a harmonic bath. Conclusion: Langevin cannot describe quantum noise but belongs to the realm of mesoscopic physics.  相似文献   

2.
A recently formulated continuum limit semiclassical initial value series representation (SCIVR) of the quantum dynamics of dissipative systems is applied to the study of vibrational relaxation of model harmonic and anharmonic oscillator systems. As is well known, the classical dynamics of dissipative systems may be described in terms of a generalized Langevin equation. The continuum limit SCIVR uses the Langevin trajectories as input, albeit with a quantum noise rather than a classical noise. Combining this development with the forward-backward form of the prefactor-free propagator leads to a tractable scheme for computing quantum thermal correlation functions. Here we present the first implementation of this continuum limit SCIVR series method to study two model problems of vibrational relaxation. Simulations of the dissipative harmonic oscillator system over a wide range of parameters demonstrate that at most only the first two terms in the SCIVR series are needed for convergence of the correlation function. The methodology is then applied to the vibrational relaxation of a dissipative Morse oscillator. Here, too, the SCIVR series converges rapidly as the first two terms are sufficient to provide the quantum mechanical relaxation with an estimated accuracy on the order of a few percent. The results in this case are compared with computations obtained using the classical Wigner approximation for the relaxation dynamics.  相似文献   

3.
4.
Starting with a quantum Langevin equation describing in the Heisenberg representation a quantum system coupled to a quantum bath, the Markov approximation and, further, the closure approximation are applied to derive a semiclassical Langevin equation for the second-order quantized Hamilton dynamics (QHD) coupled to a classical bath. The expectation values of the system operators are decomposed into products of the first and second moments of the position and momentum operators that incorporate zero-point energy and moderate tunneling effects. The random force and friction as well as the system-bath coupling are decomposed to the lowest classical level. The resulting Langevin equation describing QHD-2 coupled to classical bath is analyzed and applied to free particle, harmonic oscillator, and the Morse potential representing the OH stretch of the SPC-flexible water model.  相似文献   

5.
Theoretical tools for adequately treating stochastic effects are important for understanding their role in biological processes. Although master equations provide rigorous means for investigating effects associated with fluctuations of discrete molecular copy numbers, they can be very challenging to treat analytically and numerically. Approaches based on the Langevin approximation are often more tractable, but care must be used to ensure that it is justified in each situation. Here, we examine a model of an enzyme cycle for which noise qualitatively alters the behavior of the system: fluctuations in the population of an enzyme can result in amplification and multistability in the distribution of its product. We compare master equation and Langevin treatments of this system and show that results derived previously with a white noise Langevin equation [M. Samoilov et al., Proc. Natl. Acad. Sci. U.S.A. 102, 2310 (2005)] are inconsistent with the master equation. A colored noise Langevin equation captures some, but not all, of the essential physics of the system. The advantages and disadvantages of the Langevin approximation for modeling biological processes are discussed.  相似文献   

6.
A first principles treatment of the vibrational dynamics of molecular chemisorbates on metal surfaces is presented. It is shown that the mean field quantum evolution of the vibrational position operator is determined by a quantum Langevin equation with an electronic friction. In the mean field limit, the quantum noise and friction are related by the quantum fluctuation-dissipation theorem. The classical limit of this model is shown to agree with previously proposed models. A criterion is presented to describe the validity of the weak-coupling approximation and equations of motion for the dynamics in the presence of strong nonadiabatic coupling to electron-hole pairs are presented.  相似文献   

7.
The classical generalized Langevin equation (GLE) approach to gas/solid collisions is generalized to quantum scattering. Using Feynman's method of partial path integration, the full gas/solid propagator is reduced to a form in which only the dynamics of the incident atom and the surface oscillator(s) directly struck appear explicitly. Solving this effective dynamical problem in the semiclassical limit yields a stationary phase equation of motion identical in form to the classical GLE. The noise, however, is distributed according to quantum rather than classical statistics. From the GLE a quantum phase can be constructed and an S-matrix computed. The resulting theory is capable of describing inelastic-diffractive scattering which has been seen experimentally by Williams.  相似文献   

8.
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.  相似文献   

9.
A quantum mechanical form of the Langevin equation is derived from an explicit consideration of the molecule-medium interaction, as advocated by Simons in 1978, and by using two identities in the interaction picture. This can be easily reduced to the classical regime, and further simplified to the macroscopic Langevin equation by considering the stochastic Langevin force autocorrelation function. One of the so-called Einstein relations appears as a byproduct. By following the methodology proposed by Simons, an exact expression for the momentum autocorrelation function is obtained. The latter can be used to calculate the zero-frequency macroscopic diffusion coefficient that is observed to satisfy the second Einstein relation. The formalism described above gives rise to the possibility of explicitly computing the transport characteristics such as friction constant and diffusion coefficient from the corresponding quantum statistical mechanical expressions. A discussion on the Langevin equation becomes complete only when the corresponding Fokker-Planck equation is obtained. Therefore, the probability of the evolution of states with a particular absolute magnitude of linear momentum from those of another momentum eigenvalue is quantum mechanically defined. This probability appears as a special average value of a projection operator and as a special projection operator correlation function. A classical identity is introduced that is shown to be valid also for the quantum mechanically defined probability function. By using this identity, the so-called Fokker-Planck equation for the evolution probability is easily established.  相似文献   

10.
The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.  相似文献   

11.
The vibrational spectroscopy and relaxation of an anharmonic oscillator coupled to a harmonic bath are examined to assess the applicability of the time correlation function (TCF), the response function, and the semiclassical frequency modulation (SFM) model to the calculation of infrared (IR) spectra. These three approaches are often used in connection with the molecular dynamics simulations but have not been compared in detail. We also analyze the vibrational energy relaxation (VER), which determines the line shape and is itself a pivotal process in energy transport. The IR spectra and VER are calculated using the generalized Langevin equation (GLE), the Gaussian wavepacket (GWP) method, and the quantum master equation (QME). By calculating the vibrational frequency TCF, a detailed analysis of the frequency fluctuation and correlation time of the model is provided. The peak amplitude and width in the IR spectra calculated by the GLE with the harmonic quantum correction are shown to agree well with those by the QME though the vibrational frequency is generally overestimated. The GWP method improves the peak position by considering the zero-point energy and the anharmonicity although the red-shift slightly overshoots the QME reference. The GWP also yields an extra peak in the higher-frequency region than the fundamental transition arising from the difference frequency of the center and width oscillations of a wavepacket. The SFM approach underestimates the peak amplitude of the IR spectra but well reproduces the peak width. Further, the dependence of the VER rate on the strength of an excitation pulse is discussed.  相似文献   

12.
Mathematical and computational modeling are key tools in analyzing important biological processes in cells and living organisms. In particular, stochastic models are essential to accurately describe the cellular dynamics, when the assumption of the thermodynamic limit can no longer be applied. However, stochastic models are computationally much more challenging than the traditional deterministic models. Moreover, many biochemical systems arising in applications have multiple time-scales, which lead to mathematical stiffness. In this paper we investigate the numerical solution of a stochastic continuous model of well-stirred biochemical systems, the chemical Langevin equation. The chemical Langevin equation is a stochastic differential equation with multiplicative, non-commutative noise. We propose an adaptive stepsize algorithm for approximating the solution of models of biochemical systems in the Langevin regime, with small noise, based on estimates of the local error. The underlying numerical method is the Milstein scheme. The proposed adaptive method is tested on several examples arising in applications and it is shown to have improved efficiency and accuracy compared to the existing fixed stepsize schemes.  相似文献   

13.
14.
A framework recently developed for the extraction of a dynamic reaction coordinate to mediate reactions buried in a multidimensional Langevin equation is extended to the generalized Langevin equations without a priori assumption of the forms of the potential (in general, nonlinearly coupled systems) and the friction kernel. The equation of motion with memory effect can be transformed into an equation without memory at the cost of an increase in the dimensionality of the system, and hence the theoretical framework developed for the (nonlinear) Langevin formulation can be generalized to the non-Markovian process with colored noise. It is found that the increased dimension can be physically interpreted as effective modes of the fluctuating environment. As an illustrative example, we apply this theory to a multidimensional generalized Langevin equation for motion on the Müller-Brown potential surface with an exponential friction kernel. Numerical simulations find a boundary between the highly reactive region and the less reactive region in the space of initial conditions. The location of the boundary is found to depend significantly on both the memory kernel and the nonlinear couplings. The theory extracts a reaction coordinate whose sign determines the fate of the reaction taking into account thermally fluctuating environments, memory effect, and nonlinearities. It is found that the location of the boundary of reactivity is satisfactorily reproduced as the zero of the statistical average of the new reaction coordinate, which is an analytical functional of both the original position coordinates and velocities of the system, and of the properties of the environment.  相似文献   

15.
A model of barrier crossing dynamics governed by fractional Gaussian noise and the generalized Langevin equation is used to study the reaction kinetics of single enzymes subject to conformational fluctuations. The direct application of Kramers's flux-over-population method to this model yields analytic expressions for the time-dependent transmission coefficient and the distribution of waiting times for barrier crossing. These expressions are found to reproduce the observed trends in recent simulations and experiments.  相似文献   

16.
A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.  相似文献   

17.
Based on the Langevin linear stochastic equation, the correlations of the 3rd and 4th order for thermal fluctuations of the electrode potential are studied in an electrochemical ac circuit involving an electric double layer capacitance, a resistance of steady-state diffusion, and a Warburg impedance. The presence of the noisy Warburg impedance in the ac circuit makes the Langevin linear stochastic equation fractal. The analogy with the steady-state diffusion noise and with the noise of the barrierless-activationless slow discharge is used. Equations for bispectrum and trispectrum of electrode-potential activation are shown. It is demonstrated that the intensity of bispectrum and trispectrum is determined exclusively by the noise of the steady-state diffusion resistance if one of frequency arguments in the polyspectrum is zero. It is found that in an electrochemical ac circuit containing the noisy Warburg impedance, the asymptotics of establishment of equilibrium values of asymmetry and excess of electrode-potential fluctuations (thermalization) obeys the power law rather than the exponential law. Furthermore, the excess thermalization proceeds faster as compared with asymmetry thermalization. The performed theoretical analysis of correlations of the 3rd and 4th order of the fractal noise of electrochemical diffusion is of practical interest. For instance, the concepts of the fractal electrochemical noise can be used in the noise diagnostics of devices of electrochemical power engineering and in the noise methods for studying corrosion systems.  相似文献   

18.
Based on a quantum Langevin equation and its corresponding Hamiltonian within a c-number formalism we calculate the vibrational dephasing rate of a cubic oscillator. It is shown that leading order quantum correction due to anharmonicity of the potential makes a significant contribution to the rate and the frequency shift. We compare our theoretical estimates with those obtained from experiments for small diatomics N(2), O(2), and CO.  相似文献   

19.
Classical dissipative and fluctuation phenomena have a long history beginning with the experimental work on Brownian motion in 1827 and its theoretical explanation by Einstein in 1905, followed by Langevin's elegant explanation in 1908 when he introduced the idea of a stochastic differential equation. While we briefly review this history, our emphasis is on stochastic phenomena requiring quantum mechanics. We discuss many problems in a variety of areas and point out the merits of a quantum generalized Langevin equation in providing a universal framework for the solution of such problems. As an example, we analyze in detail the problem of radiation reaction in quantum electrodynamics. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The distribution of waiting times, f(t), between successive turnovers in the catalytic action of single molecules of the enzyme beta-galactosidase has recently been determined in closed form by Chaudhury and Cherayil [J. Chem. Phys. 125, 024904 (2006)] using a one-dimensional generalized Langevin equation (GLE) formalism in combination with Kramers' flux-over-population approach to barrier crossing dynamics. The present paper provides an alternative derivation of f(t) that eschews this approach, which is strictly applicable only under conditions of local equilibrium. In this alternative derivation, a double well potential is incorporated into the GLE, along with a colored noise term representing protein conformational fluctuations, and the resulting equation transformed approximately to a Smoluchowski-type equation. f(t) is identified with the first passage time distribution for a particle to reach the barrier top starting from an equilibrium distribution of initial points, and is determined from the solution of the above equation using local boundary conditions. The use of such boundary conditions is necessitated by the absence of definite information about the precise nature of the boundary conditions applicable to stochastic processes governed by non-Markovian dynamics. f(t) calculated in this way is found to have the same analytic structure as the distribution calculated by the flux-over-population method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号