首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The numerical solution of a Rayleigh-Taylor instability problem where an inviscid liquid of finite depth is accelerated into a gas of semi-infinite extent is obtained by transforming the irregular flow domain into a rectangular domain by a coordinate transformation. The free surface equation is solved by a Crank-Nicolson procedure. The boundary condition at the free surface for the velocity potential ø which contains the time derivative of ø is also treated by an implicit scheme. The numerical results agree well with those obtained by higher order perturbation analysis.  相似文献   

2.
A numerical procedure for calculating the solution to two-dimensionaltime dependent electrochemical machining problems is derived.This method can be used in problems where the cathode containsinsulated portions. The electrostatic potential problem is solvedby transforming the variational integral to a domain where theboundaries become straight lines, and discretizing the resultantintegral. An implicit finite difference technique is used tointegrate the free surface equation. A variable spatial meshis incorporated into the scheme. The results are compared toa Kantorovich solution of the same problem.  相似文献   

3.
A hybrid numerical model is developed for the simulation of three-dimensional, unsteady non-Darcy flow through an unconfined aquifer. The major problem in analysing flow through unconfined aquifers is that they involve two boundaries, namely a surface of seepage and a free surface, the location of which is not known beforehand. The model that is presented here determines these boundaries via a two stage modelling technique. In the first stage a one-dimensional finite difference model is used to estimate the surface of seepage height whereas in the second stage a vertically integrated finite element model determines the free surface solution within the flow domain. A comparison between numerical and experimental results is included which indicates the sensitivity of the numerical solution to the selected aquifer parameters, particularly to those associated with the determination of the height of the surface of seepage.  相似文献   

4.
Free surface flow analysis in porous media is challenging in many practical applications with strong non-linearity. An equivalent pipe network model is proposed for the simulation and evaluation of free surface flow in porous media. On the basis of representative elementary volume with homogeneous pore-scale patterns, the pore space of the homogeneous isotropic porous media is conceptualized as a collection of capillary tubes. According to Hagen-Poiseulle's law and flux equivalence principle, equivalent hydraulic parameters and unified governing formulations for the pipe network model are deduced. The two-dimensional free surface flow problem is reduced to a one-dimensional problem of pipe networks and a one-dimensional procedure based on the finite element method is then developed by introducing a continuous penalized Heaviside function. The proposed equivalent pipe network model is verified with results from numerical solutions and laboratory-measured data available in the literature, and good agreements are obtained. The proposed equivalent pipe network model is shown to be effective in analyzing the free surface flow in porous media. The numerical results also indicate that the proposed equivalent pipe network model has weak sensitivity of the mesh size and penalty parameters.  相似文献   

5.
Three different numerical methods for solving unsteady two-dimensionalporous flow problems with a free surface are presented. Thevelocity potential is expressed as the solution to a variationalproblem which is solved by a Rayleigh-Ritz expansion, a Kantorovichexpansion and a co-ordinate transformation method. The freesurface equation is solved by a Crank-Nicolson procedure. Thethree methods were tested on the same set of problems and theobtained results are virtually identical.  相似文献   

6.
In this paper we consider some free boundary problems related to the fluid flow in a porous medium. By applying a method due to Baiocchi [1] these problems are reduced to nonlinear problems on a fixed domain. The main difficulty here lies in the fact that such problems are not variational because of jump discontinuities in the direction of the oblique derivative in the boundary condition. We give a uniqueness result and by a constructive method we establish at the same time an existence result and a new algorithm for the numerical solution of the original free boundary problem. Some numerical results are given.  相似文献   

7.
The dynamic response of a free–free flexible beam floating in an unbounded water domain under the effect of moving loads is numerically analyzed. The water is assumed compressible and inviscid. The surface disturbance satisfies a linear free surface wave condition and an undisturbed condition at infinity. In the present work, a finite element procedure was developed directly in time domain and implemented to solve the two-dimensional problem of the transient behavior of an elastic beam floating on the surface of finite deep water under the passage of a moving force with uniform speed. The presented data demonstrates the applicability of the proposed mathematical model and numerical approach. The influences on the dynamic responses of floating beam of some factors were studied.  相似文献   

8.
In this paper, we propose a simple and robust numerical method for the forced Korteweg–de Vries (fKdV) equation which models free surface waves of an incompressible and inviscid fluid flow over a bump. The fKdV equation is defined in an infinite domain. However, to solve the equation numerically we must truncate the infinite domain to a bounded domain by introducing an artificial boundary and imposing boundary conditions there. Due to unsuitable artificial boundary conditions, most wave propagation problems have numerical difficulties (e.g., the truncated computational domain must be large enough or the numerical simulation must be terminated before the wave approaches the artificial boundary for the quality of the numerical solution). To solve this boundary problem, we develop an absorbing non-reflecting boundary treatment which uses outward wave velocity. The basic idea of the proposing algorithm is that we first calculate an outward wave velocity from the solutions at the previous and present time steps and then we obtain a solution at the next time step on the artificial boundary by moving the solution at the present time step with the velocity. And then we update solutions at the next time step inside the domain using the calculated solution on the artificial boundary. Numerical experiments with various initial conditions for the KdV and fKdV equations are presented to illustrate the accuracy and efficiency of our method.  相似文献   

9.
The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.  相似文献   

10.
In this paper we propose a unified formulation to introduce Lagrangian and semi-Lagrangian velocity and displacement methods for solving the Navier–Stokes equations. This formulation allows us to state classical and new numerical methods. Several examples are given. We combine them with finite element methods for spatial discretization. In particular, we propose two new second-order characteristics methods in terms of the displacement, one semi-Lagrangian and the other one pure Lagrangian. The pure Lagrangian displacement methods are useful for solving free surface problems and fluid-structure interaction problems because the computational domain is independent of the time and fluid–solid coupling at the interphase is straightforward. However, for moderate to high-Reynolds number flows, they can lead to high distortion in the mesh elements. When this happens it is necessary to remesh and reinitialize the transformation to the identity. In order to assess the performance of the obtained numerical methods, we solve different problems in two space dimensions. In particular, numerical results for a sloshing problem in a rectangular tank and the flow in a driven cavity are presented.  相似文献   

11.
We consider the numerical approximations of the three-dimensional steady potential flow around a body moving in a liquid of finite constant depth at constant speed and distance below a free surface in a channel. One vertical side is introduced as the up-stream artificial boundary and two vertical sides are introduced as the downstream arti-ficial boundaries. On the artificial boundaries, a sequence of high-order global artificial boundary conditions are given. Then the original problem is reduced to a problem defined on a finite computational domain, which is equivalent to a variational problem. After solving the variational problem by the finite element method, we obtain the numerical approximation of the original problem. The numerical examples show that the artificial boundary conditions given in this paper are very effective.  相似文献   

12.
This paper considers the numerical simulation of optimal control evolution dam problem by using conjugate gradient method.The paper considers the free boundary value problem related to time dependent fluid flow in a homogeneous earth rectangular dam.The dam is taken to be sufficiently long that the flow is considered to be two dimensional.On the left and right walls of the dam there is a reservoir of fluid at a level dependent on time.This problem can be transformed into a variational inequality on a fixed domain.The numerical techniques we use are based on a linear finite element method to approximate the state equations and a conjugate gradient algorithm to solve the discrete optimal control problem.This algorithm is based on Armijo's rule in the unconstrained optimization theory.The convergence of the discrete optimal solutions to the continuous optimal solutions,and the convergence of the conjugate gradient algorithm are proved.A numerical example is given to determine the location of the minimum surface  相似文献   

13.
We propose an approach to the investigation of problems on free oscillations of elastic bodies with a thin coating. The method consists of applying a combined mathematical model which is based on the three-dimensional equations of elasticity theory in the domain of a body and on the two-dimensional equations of the theory of shells of the Timoshenko type in the domain of a thin coating. The systems of these equations are related by the conditions of conjugation on the surface of contact. For the numerical analysis of the eigenvalue problem, we used a scheme of the finite-element method constructed by using approximations of different dimensionality.  相似文献   

14.
In this paper, the Extended-Domain-Eigenfunction-Method (EDEM) is combined with the Level Set Method in a composite numerical scheme for simulating a moving boundary problem. The liquid velocity is obtained by formulating the problem in terms of the EDEM methodology and solved using a least square approach. The propagation of the free surface is effected by a narrow band Level Set Method. The two methods both pass information to each other via a bridging process, which allows the position of the interface to be updated. The numerical scheme is applied to a series of problems involving a gas bubble submerged in a viscous liquid moving subject to both an externally generated flow and the influence of surface tension.  相似文献   

15.
Some initial-boundary-value problems for a system of quasilinear partial differential equations of gas dynamics with the initial data prescribed on the characteristic surface (characteristic Cauchy problem) are considered. The following three-dimensional flow problems are investigated: the flow produced by a motion of an impermeable piston; the flow produced by a permeable piston with a given pressure; and the flow produced by the moving free boundary. In the first two problems, the piston motion is prescribed; in the last problem, the free boundary motion cannot be prescribed in advance and must be determined as a part of the problem. It is shown that those problems can be reduced to a characteristic Cauchy problem of a certain standard type that satisfies the analog of Cauchy-Kowalewski's existence theorem in the class of analytical functions (Differential Equations 12 (1977) 1438-1444). Thus, it is proved that, in the case of the analyticity of the input data, the considered problems have unique piecewise analytic solutions which may be expressed by infinite power series (the procedure of constructing the power series solution is described in Differential Equations 12 (1977) 1438-1444 as a part of the proof of the theorem).  相似文献   

16.
In this work, we present two numerical schemes for a free boundary problem that is called one phase quadrature domain. In the first method, using the properties of a given free boundary problem, we derive a method that leads us to a fast iterative solver. The iteration procedure is adapted to work in the case when topology changes. The second method is based on shape reconstruction to establish an efficient shape Quasi‐Newton method. Various numerical experiments confirm the efficiency of the derived numerical methods. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
In this paper, we study the well‐posedness of a coupled Darcy–Oseen resolvent problem, describing the fluid flow between free‐fluid domains and porous media separated by a semipermeable membrane. The influence of osmotic effects, induced by the presence of a semipermeable membrane, on the flow velocity is reflected in the transmission conditions on the surface between the free‐fluid domain and the porous medium. To prove the existence of a weak solution of the generalized Darcy–Oseen resolvent system, we consider two auxiliary problems: a mixed Navier–Dirichlet problem for the generalized Oseen resolvent system and Robin problem for an elliptic equation related to the general Darcy equations. © 2016 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.  相似文献   

18.
Free surface flow is one of the most difficult problems in engineering to be solved, since velocity and pressure fields depend on the free surface. On the other hand, the position of the free surface is unknown previously. Furthermore, the boundary condition on the free surface is expressed by a complicated equation. In an alluvial stream, where the boundaries of the domain are not fixed, addition of free surface at the bed will increase this difficulty. A domain mapping technique is developed in this paper to study the bed evolutions. The flow is considered 2D, choosing two coordinates in streamwise and upward directions. With a proper transformation, the hydrodynamics and sediment transport governing equations in irregular domain will be mapped into a simple rectangular one. The new domain can be discretize by finite elements. The transformed governing equations are solved to obtain desired variables in the mapped domain. With a proper transformation, there is no need of inverse mapping to obtain the free water surface profile and bedform evolution and migration in the actual domain. The model has been applied to streams with movable bed and the results show a good agreement with the experimental experiences.  相似文献   

19.
The free streamline problem investigated is that of fluid flow past a symmetric truncated concave‐shaped profile between walls. An open wake or cavity is formed behind the profile. Conformal mapping techniques are used to solve this problem. The problem formulated in the hodograph plane is decomposed into two nonoverlapping domains. Heterogeneous modeling is then used to describe the problems, i.e., a different governing differential equation in each domain. In one of these domains, a Baiocchi‐type transformation is used to obtain a fixed domain formulation for the part of the transformed problem containing an unknown boundary. In the other domain, the Baiocchi‐type transformation is extended across the boundary between the two domains, thus yielding a different problem formulation. This also assures that the dependent variables and their normal derivatives are continuous along this common boundary. The numerical solution scheme, a successive over‐relaxation approach, is applied over the whole problem domain with the use of a projection‐operation over only the fixed domain formulated part. Numerical results are obtained for the case of a truncated circular profile. These results are found to be in good agreement with another published result. The existence and uniqueness of the solution to the problem as a variational inequality is shown, and the convergence of the numerical solution using a domain decomposition method scheme is demonstrated by assuming some convergence property on the common interface of the two subdomains. © 2000 John Wiley & Sons, Inc. Numeer Methods Partial Differential Eq 16: 459–479, 2000  相似文献   

20.
A fully three-dimensional unsteady flow model is developed to simulate free surface flow over a submerged structure. A new sigma coordinate is used to map the physical domain containing the wavy free surface and uneven bottom to a rectangular prism, and to keep the size of the submerged block unchanged in the sigma coordinate system. The numerical difficulty encountered in the conventional sigma coordinate system in which the block changes dynamically due to the time varying free surface is thus eliminated. A split operator scheme is used in the numerical solution so that different numerical schemes can be purposely chosen to deal with the distinctive mathematical and physical characteristics of the phenomena at different steps. k– model is used in the parameterization of turbulence due to its efficiency and reasonable performance. The model is applied to simulate the propagation of a solitary wave with good results. It is subsequently used to simulate a free surface flow against a submerged cube with one face perpendicular (or 45° inclined) to the flow. The numerical results compare favorably with the experimental measurements. In particular, no excessive turbulent kinetic energy is accumulated at the impingement regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号