首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanoscale Au layers, with irregular porosities, have been formed by the low energy Ar+ bombardment of Au nanoparticles that were sputter-deposited onto native oxide-covered Si surfaces. High-resolution field emission scanning electron microcopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) have been used to characterize the formation and evolution of the nanoporous layer. Under Ar+ bombardment, the Au nanoparticles that were initially deposited were observed to flatten and spread across the native oxide surface, without diffusing, finally coalescing at their edges to form a nanoporous film having irregular pore dimensions. XPS showed that this evolution was accompanied by the loss of Au as a result of sputtering. The formation of such porous films necessitates strong interfacial bonding to avoid the lateral diffusion of the Au nanoparticles, and their ultimate coalescence into larger nanoparticles.We demonstrated that Ar+ beam bombardment invariably caused the formation of Auδ+-Siδ bonding, rather than the expected Auδ-Siδ+ bonding, and we explain this to be due to the resonance neutralization of the Ar+ beam on impacting the Au layer. We also reveal that the presumed formation of AuSix is not quantifiable by XPS, due to the superposition of the chemical shift of the Au nanoparticles with that of the quantum size effect, during Au loss on sputtering.  相似文献   

2.
The electrical properties and interface chemistry of Cr/6H-SiC(0 0 0 1) contacts have been studied by current-sensing atomic force microscopy (CS-AFM) and X-ray photoelectron spectroscopy (XPS). Cr layers were vapor deposited under ultrahigh vacuum onto both ex situ etched in H2 and in situ Ar+ ion-bombarded samples. The Cr/SiC contacts are electrically non-uniform. Both the measured I-V characteristics and the modeling calculations enabled to estimate changes of the Schottky barrier height caused by Ar+ bombardment. Formation of ohmic nano-contacts on Ar+-bombarded surfaces was observed.  相似文献   

3.
The structure and electronic properties of epitaxial grown CeO2(1 1 1) thin films before and after Ar+ bombardment have been comprehensively studied with synchrotron radiation photoemission spectroscopy (SRPES). Ar+ bombardment of the surface causes a new emission appearing at 1.6 eV above the Fermi edge which is related to the localized Ce 4f1 orbital in the reduced oxidation state Ce3+. Under the condition of the energy of Ar ions being 1 keV and a constant current density of 0.5 μA/cm2, the intensity of the reduced state Ce3+ increases with increasing time of sputtering and reaches a constant value after 15 min sputtering, which corresponds to the surface being exposed to 2.8 × 1015 ions/cm2. The reduction of CeO2 is attributed to a preferential sputtering of oxygen from the surface. As a result, Ar+ bombardment leads to a gradual buildup of an, approximately 0.69 nm thick, sputtering altered layer. Our studies have demonstrated that Ar+ bombardment is an effective method for reducing CeO2 to CeO2−x and the degree of the reduction is related to the energy and amount of Ar ions been exposed to the CeO2 surface.  相似文献   

4.
R. Shimizu  T. Okutani 《Surface science》1982,116(1):L173-L178
Surface composition of Au-Cu(43 at%) alloy under 1.5–5 keV argon ion bombardment has been investigated by ion scattering spectroscopy (ISS). In this experiment, we adopted a specific technique to use mixed He+ and Ar+ ions as primary beam in order to perform sputtering (Ar+) and ISS measurement (He+) simultaneously. The outermost atom layer of Au-Cu alloys under Ar+ ion bombardment is Au-rich leading to the conclusion that Ar+ ion bombardment of AuCu alloys causes the preferential sputtering of Cu atoms, resulting in a Au-rich outermost atom layer and a depletion layer of Au atoms beneath the outermost atom layer due to ion-beam-enhanced surface segregation. This result explains the experimental results obtained by AES as well.  相似文献   

5.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs.  相似文献   

6.
Radiation damage to the surfaces of lithium and barium sulfates and carbonates under 4 ke V Ar+ bombardment has been investigated by X-ray photoelectron Spectroscopy (XPS). Damage is readily observed at a dose of 1 × 1016 ions cm?2 with saturation occurring over the range 2–8 × 1017 ions cm?2. Both valence and core level XPS spectra indicate that, at the saturation dose, the basic sulfate and carbonate structures remain along with decomposition products. Both sulfur and carbon are preferentially lost from all four compounds and oxygen is preferentially lost from both Li compounds but not from the Ba compounds as a result of bombardment. The major decomposition products are the metal oxides with smaller quantities of carbides, sulfides, and SOnx?(n = 3,2,1) species.  相似文献   

7.
It has been studied how photoelectron and CKVV spectra of partially crystalline poly(vinylidene fluoride) (PVDF) are modified during a long-term degradation of its surface under soft X-rays (AlK α), which is accompanied by a flow of secondary electrons having different energies, and upon exposure to a unfocused beam of 600 eV Ar+ ions. In both cases, the surface layer of the sample is enriched with carbon owing to defluorination. The shape of the electron emission spectra of the carbonized layer depends on an external effect; that is, whether soft X-ray photons or ions are used for defluorination. In the case of bombardment with Ar+, there is clear evidence for the dominance of the sp2 bonds between carbon atoms, as can be seen from the specific shape of the C KVV band and the C1s spectrum. The most surprising result of this study is that both photons and ions produce the same depth gradient of residual fluorine at an equal fluorine concentration in the carbonized surface layer. The reason for this is not clear and needs further investigation.  相似文献   

8.
H.Y. Hu 《Applied Surface Science》2008,254(24):8029-8034
The chemical structure and site location of sulfur atoms on n-GaAs (1 0 0) surface treated by bombardment of S+ ions over their energy range from 10 to 100 eV have been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. The formation of Ga-S and As-S species on the S+ ion bombarded n-GaAs surface is observed. An apparent donor doping effect is observed for the n-GaAs by the 100 eV S+ ion bombardment. It is found that the S+ ions with higher energy are more effective in the formation of Ga-S species, which assists the n-GaAs (1 0 0) surface in reconstruction into an ordered (1 × 1) structure upon subsequent annealing. The treatment is further extended to repair Ar+ ion damaged n-GaAs (1 0 0) surface. It is found that after a n-GaAs (1 0 0) sample is damaged by 150 eV Ar+ ion bombardment, and followed by 50 eV S+ ion treatment and subsequent annealing process, finally an (1 × 1) ordering GaAs (1 0 0) surface with low surface states is obtained.  相似文献   

9.
The composition change of the outermost atom layer of TiC(110) under ion bombardment with 1.5–3 keV He+ and He+ + Ar+ ions has been measured by ion scattering spectroscopy with He+ ions at different sample temperatures. It has been found that the preferential sputtering of C atoms takes place for both the He+ and Ar+ ion bombardment, however the preferred sputtering is more pronounced for Ar+ ions than for He+ ions. The ion bombardment with He+ ions at elevated sample temperatures hardly results in any change in surface composition below ~800°C, while Ar+ ion bombardment results in C enrichment for elevated temperatures as reported so far.  相似文献   

10.
《Surface science》1988,200(1):L470-L472
A recent paper by Lad and Henrich [Surface Sci. 193 (1988) 81], on the phase changes induced by Ar+ bombardment and annealing in O2 at Fe2O3 single crystal surfaces, is commented upon. It is pointed out that quantitative XPS analysis would have provided more direct information on phase changes induced by surface treatments. It is suggested that chemical effects contribute to the O 1s spectrum asymmetry observed in Ar+ bombarded Fe2O3 surfaces.  相似文献   

11.
The formation of Ni x Al y intermetallic compounds in two-layer (Ni/Al) structures (nickel films deposited on aluminum substrates in vacuum) under bombardment by Ar+ ions has been studied experimentally. The method based on Rutherford backscattering of He+ ions is used to demonstrate that argon ion bombardment causes the formation of intermetallic compounds in the near-surface layer. The thickness of the intermetallic layer formed in the near-surface region substantially exceeds the projective ion path. The composition and thickness of the intermetallic layer depend mainly on the implantation dose and the substrate temperature, rather than on the ion current density. In the intermetallic layer, the content of nickel increases with increasing temperature. It has been established that, in the absence of bombardment, intermetallic phases are not observed at temperatures lower than T = 400°C and that, in the presence of bombardment, the Ni3Al intermetallic layer arises at a temperature of 320°C.  相似文献   

12.
It has been found that, in contrast to the commonly accepted opinion, simultaneous irradiation by 15-keV Ar+ ions and 2.5-keV electrons at temperatures above 0.5T m (T m is the melting temperature) induces much larger sputtering of metallic copper, nickel, and steel than irradiation only by Ar+ ions. The effect increases with the temperature. At T = 0.7T m, the sputtering coefficients in the case of ion-electron irradiation are more than twice as large as the sputtering coefficients in the case of irradiation by Ar+ ions. The experiments on the sublimation of copper show that the sublimation rate in the case of the heating of a sample by an electron beam is higher than that in the case of heating in an electric vacuum oven. The revealed effects are explained by the electron-induced excitation of adatoms (atoms stuck over the surface, which appear owing to ion bombardment). Excited adatoms have a smaller binding energy with the surface and are sputtered more easily.  相似文献   

13.
The aim of the present study is to demonstrate the feasibility to form well-ordered nanoholes on InP(1 0 0) surfaces by low Ar+ ion sputtering process in UHV conditions from anodized aluminum oxide (AAO) templates. This process is a promising approach in creating ordered arrays of surface nanostructures with controllable size and morphology. To follow the Ar+ ion sputtering effects on the AAO/InP surfaces, X-ray photoelectron spectroscopy (XPS) was used to determine the different surface species. In4d and P2p core level spectra were recorded on different InP(1 0 0) surfaces after ions bombardment. XPS results showed the presence of metallic indium on both smooth InP(1 0 0) and AAO/InP(1 0 0) surfaces. Finally, we showed that this experiment led to the formation of metallic In dropplets about 10 nm in diameter on nanoholes patterned InP surface while the as-received InP(1 0 0) surface generated metallic In about 60 nm in diameter.  相似文献   

14.
Amorphous carbon nitride (CNx) thin layer, formed by the keV N2+ irradiation of highly oriented pyrolytic graphite, has been investigated using X-ray photoelectron and raman spectroscopies, and time-of-flight secondary ion mass spectrometry. C1s X-ray photoelectron spectroscopy (XPS) peak separations indicate that C-N bonds form over and above the graphite fragmentation previously obtained on Ar+ irradiation. N1s XPS peak separations indicate three components. Their attributions, and the resultant CNx structure, are confirmed by angle-resolved XPS and TOF-SIMS analyses.  相似文献   

15.
Compositional and chemical changes in TiO2 and Ph, Ni, Al and Ba titanates induced by bombardment with Ar+ and O 2 + ons of different energies have been studied quantitatively by XPS. An increase of preferential loss of oxygen and, in case of PbTiO3, of lead has been observed when increasing the Ar+ ion energy from 3.5 to 10 keV. Because of oxygen loss, Ti4+ species reduce to Ti3+ and Ti2+. In addition, the loss of oxygen from PbTiO3 and NiTiO3 leads to the metallic state of nickel and lead, whereas aluminium and barium in Al2TiO5 and BaTiO3 maintain their chemical state (i.e., Al3+ and Ba2+). Bombardment with OZ ions of PbTiO3 and NiTiO3 leads to a partial reduction of Pb and Ni. This metallization and the preferential loss of lead are more efficient at higher ion energies for both, O 2 + and Ar+ bombardment. The results are discussed in terms of chemical stabilities and the possibility of oxygen diffusion in the bombarded oxides.  相似文献   

16.
The process of reduction of the surface of higher oxide Ta2O5 under irradiation by inert gas (Ar+) and chemically active gas (O2+) ions with an energy of 3 keV in high vacuum is investigated by X-ray photoelectron spectroscopy at room temperature. It is found that intermediate oxide TaO2, lower oxide TaO, and metallic Ta form in the surface layers of Ta2O5 under Ar+ ion bombardment. An insignificant amount of intermediate oxide TaO2 forms in the surface layers of Ta2O5 under O2+ ion bombardment. Ion-beam-induced reduction of the Ta2O5 surface is shown to depend on the type of ion and irradiation dose.  相似文献   

17.
The variations in the composition and structure of CoSi2/Si(111) surface layers under Ar+ ion bombardment with subsequent annealing has been studied. It has been demonstrated that nanocluster phases enriched with Si atoms form on the CoSi2 surface at low doses D ≤ 1015 cm–2, and a pure Si nanofilm forms at high doses.  相似文献   

18.
X-ray photoelectron spectroscopy is used to study the process of reduction of the surface of the higher oxide Nb2O5 upon bombardment with inert gas ions (Ar+) and reactive gas ions (O2+) with an energy of 1 and 3 keV in high vacuum at room temperature. It is found that, upon bombardment with Ar+ ions, the lower oxide NbO and the intermediate oxide NbO2 are formed in the surface layers of the oxide Nb2O5. Bombardment with O2+ ions leads to the formation of an extremely insignificant amount of the intermediate oxide NbO2 in the surface layers of the oxide Nb2O5. It is revealed that the process of ion-beam reduction of the surface of the oxide Nb2O5 depends on the ion type, dose, and energy of exposure.  相似文献   

19.
Post-bombardment segregation of gold in Au0.5Cu0.5 alloy has been observed at room temperature. The segregation is caused by the redistribution of atoms in the disordered subsurface created by Ar+ ion bombardment at energies of 0.5–3 keV in order to lower the free energy. Such an observation demonstrates that post-bombardment segregation takes place not only in the two-phase alloy, but also in a single-phase system such as the Au-Cu alloy, which is not in agreement with previous observations. It is also demonstrated that when the bombardment is stopped at room temperature the concentration gradients between the outermost layer and the second layer as well as in the near-surface region remain rather than rapidly disperse, which is in contrast to the assumption suggested recently. An enrichment of gold at the outermost layer as well as in the subsurface caused by Ar+ ion bombardment at energies below 1 keV made the post-bombardment segregation clearly observable, but the severe depletion of gold beneath the outermost layer created by the pre-bombardment at energies above 1 keV rendered the apparent segregation less clear. All of these facts lend further support to the point of view which suggests that the bombardment-induced segregation and diffusion play an important role in the determination of the surface composition of a sputtered alloy even at room temperature.  相似文献   

20.
The sputtering of fullerene C60 films under bombardment with Ar+ ions was studied. In thin films, blistering effects related to diffusion of the implanted argon ions along the layer and substrate interface have been found to occur. A threshold behavior was observed for sputtering at ion energies around 0.2 keV, which is much higher than in graphites. It has been shown that dependence of the work function on ion energy can be described in the framework of Zigmund-Falcone’s approximation, which takes into account anisotropic effects in cascade collisions, and with Yudin’s approximation for the sputtering of elemental materials. The obtained surface binding energy for fullerenes is U s?6.7 eV, which is less than the value for graphites, U s graph=7.7 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号