首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate cluster formation in populations of coupled chaotic model neurons under homogeneous global coupling, and distance-dependent coupling, where the coupling weights between neurons depend on their relative distance. Three types of clusters emerge for global coupling: synchronized cluster, two state cluster and anti-phase cluster. In addition to these, we find a novel three state cluster for distance-dependent coupling, where the population splits into two synchronized groups and one incoherent group. Lastly, we study a system with random inhomogeneous coupling strengths, in order to discern if the special pattern found in distance-dependent coupling arises from the underlying lattice structure or from the inhomogeneity in coupling.  相似文献   

2.
In a network of neuronal oscillators with time-delayed coupling, we uncover a phenomenon of enhancement of neural synchrony by time delay: a stable synchronized state exists at low coupling strengths for significant time delays. By formulating a master stability equation for time-delayed networks of Hindmarsh-Rose neurons, we show that there is always an extended region of stable synchronous activity corresponding to low coupling strengths. Such synchrony could be achieved in the undelayed system only by much higher coupling strengths. This phenomenon of enhanced neural synchrony by delay has important implications, in particular, in understanding synchronization of distant neurons and information processing in the brain.  相似文献   

3.
We study dynamical behaviors in coupled nonlinear oscillators and find that under certain conditions, a whole coupled oscillator system can cease oscillation and transfer to a globally nonuniform stationary state [i.e., the so-called oscillation death (OD) state], and this phenomenon can be generally observed. This OD state depends on coupling strengths and is clearly different from previously studied amplitude death (AD) state, which refers to the phenomenon where the whole system is trapped into homogeneously steady state of a fixed point, which already exists but is unstable in the absence of coupling. For larger systems, very rich pattern structures of global death states are observed. These Turing-like patterns may share some essential features with the classical Turing pattern.   相似文献   

4.
李凌  金贞兰  李斌 《物理学报》2011,60(4):48703-048703
头皮脑电时间序列的相关性是大脑皮层源的相位同步性的一种体现,因此对相位同步源进行定位,同时找到源对应的时间序列在脑成像研究领域具有重要意义.基于Rössler 模型提出仿真相位同步偶极子源的时间序列的方法,利用时间序列进行同心四层球头模型正演,获得仿真头皮脑电数据.提出了基于最大似然因子分析的相位同步脑电源的时-空动力学分析方法,对仿真和真实头皮脑电数据进行了验证,并与主成分分析法进行对比.仿真实验结果表明:最大似然因子分析法估计的时间序列与仿真源的时间序列具有更高的相关系数,同时估计源与仿真源 关键词: 脑电图 相位同步 因子分析 主成分分析  相似文献   

5.
In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.  相似文献   

6.
Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.  相似文献   

7.
We present here some studies on noise-induced order and synchronous firing in a system of bidirectionally coupled generic type-I neurons. We find that transitions from unsynchronized to completely synchronized states occur beyond a critical value of noise strength that has a clear functional dependence on neuronal coupling strength and input values. For an inhibitory-excitatory (IE) synaptic coupling, the approach to a partially synchronized state is shown to vary qualitatively depending on whether the input is less or more than a critical value. We find that introduction of noise can cause a delay in the bifurcation of the firing pattern of the excitatory neuron for IE coupling.  相似文献   

8.
We show that a ring of unidirectionally delay-coupled spiking neurons may possess a multitude of stable spiking patterns and provide a constructive algorithm for generating a desired spiking pattern. More specifically, for a given time-periodic pattern, in which each neuron fires once within the pattern period at a predefined time moment, we provide the coupling delays and/or coupling strengths leading to this particular pattern. The considered homogeneous networks demonstrate a great multistability of various travelling time- and space-periodic waves which can propagate either along the direction of coupling or in opposite direction. Such a multistability significantly enhances the variability of possible spatio-temporal patterns and potentially increases the coding capability of oscillatory neuronal loops. We illustrate our results using FitzHugh-Nagumo neurons interacting via excitatory chemical synapses as well as limit-cycle oscillators.  相似文献   

9.
Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with a three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength. Owing to the infinite multistability, the degree of synchrony in an asymptotic state can vary continuously within some range depending on the initial phase pattern.  相似文献   

10.
We introduce a new method for predicting characteristics of the synchronized state achieved by a wide class of unidirectional coupling schemes. Specifically, we derive a transfer function from the coupling model that provides estimates of the correlation between the drive and response waveforms, and of the time shift (i.e., lag or anticipation) of the synchronized state. To demonstrate the method, we apply it to a simulated system of coupled Rossler oscillators as well as to an experimental system of coupled chaotic electronic circuits. Finally, we show that the transfer function can be exploited to design novel coupling schemes that significantly improve the correlation and increase the maximum achievable time shift.  相似文献   

11.
In this paper, we consider the spatiotemporal dynamics in a ring of N mutually coupled self-sustained oscillators in the regular state. When there are no parameter mismatches, the good coupling parameters leading to full, partial, and no synchronization are derived using the properties of the variational equations of stability. The effects of the spatial dimension of the ring on the stability boundaries of the synchronized states are performed. Numerical simulations validate and complement the results of analytical investigations. The influences of coupling parameter mismatch on the forecasted stability boundaries are also highlighted.  相似文献   

12.
A study is developed focusing the loss of stability of the interface dividing two regions of different spatial patterns on a coupled map lattice using coupling as the parameter guiding the transition. These patterns are constructed over local periodic/chaotic attractors generating regions of synchronized/collective behavior. The discrete feature of the underlying lattice, the anisotropy that stems from such discreteness and its possible change to an isotropic system through coupling with large number of neighbors are also investigated.  相似文献   

13.
Analytic and simulation studies for the steady-state equilibria and bifurcations of coupled microlaser arrays are described. Lateral cavity interactions affect the gain in each cavity, leading to active photonic lattice behavior, equivalent to a nonlinear coupled oscillator lattice. The coupled-cavity rate equations are employed to follow the coherent photon and carrier population in each lattice site. Fixed-point-type steady states, of constant lattice phase shift, result for low coupling strengths; the radiation envelope for these states conforms with a periodic Bloch state over the array. Bifurcations to limit cycles of increasing complexity occur at higher coupling via period doubling sequences. The associated spatial patterns of photon and carrier lattice distribution resemble photonic convection cells. Limit cycles of different periods, emanating mathematically from different original fixed points, coexist at high strengths, each one accessible from different initial conditions. The multiplicity of possible limit cycles in systems with many degrees of freedom (number of lattice sites) combined with changes in their accessibility from initial conditions offers new insights to chaotic transitions, compared to low dimensionality paradigms.  相似文献   

14.
Animal locomotion employs different periodic patterns known as animal gaits. In 1993, Collins and Stewart recognized that gaits possessed certain symmetries and characterized the gaits of quadrupeds and bipeds using permutation symmetry groups, which impose constraints on the locomotion center called the central pattern generator (CPG) in the animal brain. They modeled the CPG by coupling four nonlinear oscillators and found that it was possible to reproduce all symmetries of the gaits by changing the coupling strength. Here we propose to extend this idea using coupled chaotic oscillators synchronized using the Pyragas method in order to characterize the CPG symmetries. We also evaluate the time series behavior when the foot is in contact with the ground: this has potential robotic applications.  相似文献   

15.
The purpose of this paper is to study the special forms of multimode dynamics that one can observe in systems with resource-mediated coupling, i.e., systems of self-sustained oscillators in which the coupling takes place via the distribution of primary resources that controls the oscillatory state of the individual unit. With this coupling, a spatially inhomogenous state with mixed high and low-amplitude oscillations in the individual units can arise. To examine generic phenomena associated with this type of interaction we consider a chain of resistively coupled electronic oscillators connected to a common power supply. The two-oscillator system displays antiphase synchronization, and it is interesting to note that two-mode oscillations continue to exist outside of the parameter range in which oscillations occur for the individual unit. At low coupling strengths, the multi-oscillator system shows high dimensional quasiperiodicity with little tendency for synchronization. At higher coupling strengths, one typically observes spatial clustering involving a few oscillating units. We describe three different scenarios according to which the cluster can slide along the chain as the bias voltage changes.  相似文献   

16.
We report on the linear and non-linear emission of cavity-polaritons under resonant excitation. At low excitation density, in addition to polariton photoluminescence, strong Rayleigh scattering is observed. At higher excitation densities, a sudden transition to a highly emissive state is observed, accompanied by spatial patterning. We attribute such phenomena to a combination of nonlinear cavity-polariton relaxation mechanism and nonlinear response of the cavity, leading to transverse pattern formation. A careful analysis of near- and far-field emission patterns with spatial filtering as well as reflectivity shows that an inhomogeneous situation develops, the center of the excited region undergoing a strong to weak coupling transition while the periphery is still in strong coupling. Despite the complex non-linear behavior we observe no signatures of Bose–Einstein condensation or Boser action.  相似文献   

17.
We report a dynamical study of multiplicative diffusion coupled map lattices with the coupling between the elements only through the bifurcation parameter of the mapping function. We discuss the diffusive process of the lattice from an initially random distribution state to a homogeneous one as well as the stable range of the diffusive homogeneous attractor. For various coupling strengths we find that there are several types of spatiotemporal structures. In addition, the evolution of the lattice into chaos is studied. A largest Lyapunov exponent and a spatial correlation function have been used to characterize the dynamical behavior. (c) 1996 American Institute of Physics.  相似文献   

18.
Synchronization in networks of complex topologies using couplings of time-varying strength is numerically investigated. The time-dependencies of coupling strengths are coupled to the dynamics of the nodes in a way to enhance synchronization. By time-varying couplings, oscillators are found to take quite a short time to reach synchronization state when the couplings are relatively strong. Even when a nearly regular networks of large-size with few shortcuts is difficult to be synchronized by fixed couplings, the time-varying couplings can easily enhance the emergence of synchronization.  相似文献   

19.
We review chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desynchronized) dynamics in networks of identical oscillators. We focus on chimera states involving amplitude as well as phase dynamics, complex topologies like small-world or hierarchical (fractal), noise, and delay. We show that a plethora of novel chimera patterns arise if one goes beyond the Kuramoto phase oscillator model. For the FitzHugh-Nagumo system, the Van der Pol oscillator, and the Stuart-Landau oscillator with symmetry-breaking coupling various multi-chimera patterns including amplitude chimeras and chimera death occur. To test the robustness of chimera patterns with respect to changes in the structure of the network, regular rings with coupling range R, small-world, and fractal topologies are studied. We also address the robustness of amplitude chimera states in the presence of noise. If delay is added, the lifetime of transient chimeras can be drastically increased.  相似文献   

20.
We report the output power emitted by an array of ultra high frequency current modulated semiconductor lasers (CMSCL) whose elements are mutually coupled in a ring configuration and globally coupled through an external mirror. By varying the coupling strengths, we determine the domain where the in-phase state occurs. The dependence of the output power on the coupling strengths is analyzed. The power increases with the number of lasers and shows an abrupt increase or decrease as the coupling strengths increase. This particular behaviour is related to synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号