首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of anions from sulfuric acid solutions has been studied on Ru(0001) single crystal and polycrystalline surfaces by electrochemical techniques and in-situ Fourier transform infrared spectroscopy. Infrared spectroscopy shows that bisulfate is the anion adsorbed on the Ru(0001) surface. The bisulfate adsorption is detected at the H2 evolution potential and extends into the potential region where the Ru surface is oxidized. A method for extracting unipolar bands from bipolar bands has been presented. The tuning rate of adsorbed bisulfate in the double layer potential region of Ru(0001) was found to be significantly smaller than those observed for other platinum metals. This has been ascribed to a small change in bisulfate coverage on Ru(0001) in this potential range. Bisulfate vibration frequencies are higher on this surface than at any face-centered cubic metal with the (111) orientation. Oxidation of the Ru(0001) surface is limited to one electron per Ru atom, distinctly different from the high degree of oxidation seen in polycrystalline surfaces. For oxidized polycrystalline Ru, only solution phase sulfates and bisulfates are observed in the IR spectra.  相似文献   

2.
[Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) ions were entrapped into the cavities of two-dimensional anionic sheet-like coordination polymeric networks of [M(dca)(3)](-) (dca = dicyanamide; M = Mn(II) and Fe(II)). The prepared compounds, {[Ru(bpy)(3)][Mn(dca)(3)](2)}(n) (1) and {[Ru(bpy)(3)][Fe(dca)(3)](2)}(n) (2), were structurally characterized by X-ray single crystal analysis. The spectroscopic properties of the [Ru(bpy)(3)](2+) ion dramatically changed on its entrapment in [M(dca)(3)](-). The [Ru(bpy)(3)](2+) moiety present in 1 and 2 exhibits novel dual photo-emission at room temperature.  相似文献   

3.
The Ru(2) and RuNi derivatives of 1,8-bis(10,15,20-trimesityl-5-porphyrinato)anthracene-a recently reported cofacial diporphyrin ligand comprising two hindered porphyrins spanned by an anthracene bridge-have been synthesized. Both Ru(2)(DPAHM) and RuNi(DPAHM) are extremely reactive species that apparently contain 14-electron Ru(II) centers and, as is the case for their monoporphyrin analog, (5,10,15,20-tetramesitylporphyrinato)ruthenium [Ru(TMP)], must be rigorously protected from oxygen, nitrogen, and other ligating agents. In addition, these electron-deficient Ru(II) porphyrins all appear to bind aromatic solvents such as benzene and toluene, the weakest ligating solvents in which these Ru(II) porphyrins have been found soluble. Ru(TMP) and its metallodiporphyrin analogs, Ru(2)(DPAHM) and RuNi(DPAHM), catalyze H(2)/D(2) exchange in benzene solution and as solids. When adsorbed on a particularly nonpolar carbon support, these Ru(II) porphyrins all manifest significant activity with respect to catalytic H(2)/D(2) exchange [approximately 40 turnovers s(-)(1), when normalized for Ru(II) content]. In addition, these molecules slowly catalyze the exchange of H(2) into deuterated aromatic hydrocarbons and, in the absence of solvent, the exchange of D(2) into CH(4). Kinetic studies of H(2)/D(2) exchange catalyzed by these Ru(II) porphyrins on carbon supports indicate that exchange is likely to be effected by one face of a single Ru(TMP) moiety. The activity of each supported catalyst was suppressed by the presence of ligands, either exogenous (CO irreversibly and N(2) reversibly) or from polar functionalities on the surface of the supporting matrix.  相似文献   

4.
Using model catalysts, we demonstrate that CO desorption from Ru surfaces can be switched from that typical of single crystal surfaces to one more characteristic of supported nanoparticles. First, the CO desorption behaviour from Ru nanoparticles supported on highly oriented pyrolytic graphite was studied. Both mass-selected and thermally evaporated nanoparticles were deposited. TPD spectra from the mass-selected nanoparticles exhibit a desorption peak located around 410 K with a broad shoulder extending from around 480 K to 600 K, while spectra obtained from thermally evaporated nanoparticles exhibit a single broad feature from ~350 K to ~450 K. A room temperature deposited 50 ? thick Ru film displays a characteristic nanoparticle-like spectrum with a broad desorption feature at ~420 K and a shoulder extending from ~450 K to ~600 K. Subsequent annealing of this film at 900 K produced a polycrystalline morphology of flat Ru(001) terraces separated by monatomic steps. The CO desorption spectrum from this surface resembles that obtained on single crystal Ru(001) with two large desorption features located at 390 K and 450 K due to molecular desorption from terrace sites, and a much smaller peak at ~530 K due to desorption of dissociatively adsorbed CO at step sites. In a second experiment, ion sputtering was used to create surface defects on a Ru(0 1 54) single crystal surface. A gradual shift away from the desorption spectrum typical of a Ru(001) surface towards one resembling desorption from supported Ru nanoparticles was observed with increasing sputter time.  相似文献   

5.
单原子催化剂由于能最大限度地利用贵金属以及其独特的催化性能而引起了人们的兴趣.基于其表面原子性质,CeO2是稳定单金属原子最常用的载体之一.一旦金属含量超过其负载的载体容量,就会形成金属纳米粒子,因而许多单原子催化剂的金属含量受限.目前,还没有直接的测量方法来确定载体稳定单个原子的容量.本文开发了一种基于纳米颗粒的技术,即通过将Ru纳米颗粒重新分散成单个原子,并利用Ru单原子和纳米颗粒在CO2加氢反应中的不同催化性能,从而确定该容量.该方法避免了湿浸初期反离子对金属负载的影响,最终可应用于多种不同的金属.结果表明,该技术可跟踪氧空位浓度和表面氧含量的变化趋势,有望成为一种定量测定载体单原子稳定容量的新方法.  相似文献   

6.
The photophysical properties of nanoporous TiO(2) surfaces modified with two new Ru(II)-(bpt)-Ru(II) and Ru(II)-(bpt)-Os(II) polypyridyl complexes are reported. These dyads have been prepared by a two-step synthetic pathway. In the first step, [Ru(dcbpy)(2)Cl(2)], where dcbpy is 4,4'-dicarboxy-2,2-bipyridyl, was reacted with the bridging ligand 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) to yield the mononuclear precursor Na(3)[Ru(dcbpy)(2)(bpt)].3H(2)O. Subsequent reaction of this compound with either [Ru(bpy)(2)Cl(2)] or [Os(bpy)(2)Cl(2)] yields the Ru(II)-Ru(II) and Ru(II)-Os(II) dyads. Electrochemical data, together with time-resolved transient absorption spectroscopy and the investigation of the incident-photon-to-current-efficiency (IPCE), have been used to obtain a detailed picture of the photoinduced charge injection properties of these dyads. These measurements indicate that for the heterosupramolecular triad based on Ru(II)-(bpt)-Ru(II), the final product species obtained upon charge injection is TiO(2)(e)-Ru(II)Ru(III). For the mixed metal Ru(II)-(bpt)-Os(II) dyad, both metal centers inject efficiently into the semiconductor surface and as a result TiO(2)(e)-Ru(II)Os(III) is obtained as a single charge-separated product.  相似文献   

7.
The structuring role of benzene‐1,3,5‐tricarboxamide (BTA) groups for the catalytic activity of single chain polymeric nanoparticles in water was investigated in the transfer hydrogenation of ketones. To this end, a set of segmented, amphiphilic copolymers was prepared, which comprised oligo(ethylene glycol) side chains to impart water solubility, BTA and/or lauryl side chains to induce hydrophobicity and diphenylphosphinostyrene (SDP) units in the middle part as a ligand to bind a ruthenium catalyst. All copolymers were obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization and showed low dispersities (Mw/Mn = 1.23–1.38) and controlled molecular weights (Mn = 44–28 kDa). A combination of circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) showed that all copolymers fold into a single chain polymeric nanoparticles (SCPNs) as a result of the helical self‐assembly of the pendant BTA units and/or hydrophilic–hydrophobic phase separation. To create catalytic sites, RuCl2(PPh3)3 was incorporated into the copolymers. The Cotton effects of the copolymers before and after Ru(II) loading were identical, indicating that the helical self‐assembly of the BTA units and the complexation of SDP ligands and Ru(II) occurs in an orthogonal manner. DLS revealed that after Ru(II) loading, SDP‐bearing copolymers retained their single chain character in water, while copolymers lacking SDP units clustered into larger aggregates. The Ru(II) loaded SCPNs were tested in the transfer hydrogenation of cyclohexanone. This study reveals that BTA induced stack formation is not crucial for SCPN formation and catalytic activity; SDP‐bearing copolymers folded by Ru(II) complexation and hydrophobic pendants suffice to provide hydrophobic, isolated reaction pockets around Ru(II) complexes. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 12–20  相似文献   

8.
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W–Rh, W–Ru, W–Ir) permanent modifiers thermally deposited on the integrated platform of a transversally heated graphite atomizer (TGA) were employed for the determination of antimony in sludge, soil, sediment, coal, ash and water samples by electrothermal atomic absorption spectrometry (ETAAS).Microwave digests of solid samples and water samples were directly introduced into different pre-treated platforms of graphite tubes. The performance of the modifiers for accurate antimony determination in real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for analyte determinations in simpler matrices, such as waters (recoveries of certified values 95–105%), but the analyte recoveries of certified values in sludge, soil, sediment, coal, and ash samples were always lower than 90%. On the other hand, for the determination of antimony, using W–Rh, W–Ru, and W–Ir permanent modifiers presented recoveries of certified values within 95–105% for all the samples.Long-term stability curves obtained for the determination of antimony in environmental samples with different permanent modifiers (Rh, Ir, Ru, W–Rh, W–Ir, W–Ru) showed that the improvement in tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 40% longer compared to a single permanent modifier.  相似文献   

9.
Pt-Ru alloys are prominent electrocatalysts in fuel cell anodes as they feature a very high activity for the oxidation of reformate and methanol. The improved CO tolerance of these alloys has been discussed in relation to the so-called ligand and bifunctional mechanisms. Although these effects have been known for many years, they are still not completely understood. A new approach that bridges the gap between single crystals and practical catalysts is presented in this paper. Nanoparticulate model systems attached to an oxidized glassy carbon electrode were prepared by combining both ligand-stabilized and spontaneously deposited Pt and Ru nanoparticles. These electrodes showed very different voltammetric responses for CO and methanol oxidation. The cyclic voltammograms were deconvoluted into contributions attributed to Pt, Ru, and Pt-Ru contact regions to quantify the contribution of the latter to the bifunctional mechanism. Scanning transmission electron microscopy confirmed the proximity of Pt and Ru nanoparticles in the different samples.  相似文献   

10.
Reaction of the known macrocycle 1a, which contains two bipyridine units in opposing sides, with two equivalents of [Ru(bipy)2Cl2] furnishes the doubly exocyclically complexed macrocycle 8a in 55% yield. Synthesis of the shape-persistent macrocycle 1c by Hagihara-Sonogashira cross-coupling chemistry of suitably functionalized building blocks is reported. This macrocycle was also converted into a Ru complex (8c). X-ray analysis of single crystals of 1b and 1c shows a layered structure that contains "channels" filled with solvent molecules and parts of the flexible chains, with which the cycle is decorated for solubility reasons.  相似文献   

11.
A sensitive and stable aptasensor for the assay of tumor cells based on signal amplification with novel ruthenium(II) covalently doped silica nanoparticles (Si NPs) was presented for the first time. For the proposed aptasensor, one target signal could be transformed into multiple ECL signals of Ru(II) markers since a single Si NP could be loaded with multiple of Ru(II) markers. The binding of Si NPs on the electrode further increased the sensor sensitivity. The advantage of extraordinary stability of covalently doped Si NPs made the sensor exhibit excellent reproducibility. The new method for the assay of tumor cells is reliable.  相似文献   

12.
A multi-enzyme electrode composed of FAD-dependent and NAD-dependent enzymes was fabricated using a poly-ruthenium complex (PAHA–Ru), which has two 1,10-phenanthroline-5,6-dione molecules as ligands. PAHA–Ru was used to immobilize FAD-dependent glucose dehydrogenase (FAD–GDH) onto an electrode and to examine PAHA–Ru containing the quinone moieties as an electron mediator. In cyclic voltammetry measurements of the FAD–GDH modified electrode in the presence of D-glucose, a catalytic current was obtained, which indicated electron transfer from FAD–GDH to PAHA–Ru. Our previous study has reported that PAHA–Ru with the quinone ligands also works as a mediator for NADH oxidation on an NAD-dependent alcohol dehydrogenase (NAD–ADH) modified electrode. Hence, FAD–GDH and NAD–ADH were co-immobilized with PAHA–Ru to make a multi-enzyme electrode. Using this multi-enzyme electrode as an anode, catalytic currents were observed in D-glucose solution, ethanol solution, and a mixed D-glucose and ethanol solution. The catalytic current in the mixed solution was greater than the currents obtained in the single substrate solutions, indicating bioelectrocatalysis reactions by the two enzymes and the single mediator in the mixed solution. Thus, we demonstrated that PAHA–Ru modified electrode enables selection of enzymes and their substrates from a wider range for enzymatic biofuel cells.  相似文献   

13.
Ruthenium polypyridyl complexes are incorporated into polymers for sensing and light emitting materials applications. Coupling reactions between metal complexes and polymers are one route to polymeric metal complexes. In an effort to increase conjugation efficiency, tune materials properties, and introduce a responsive crosslink, ruthenium tris(bipyridine) derivatives with sulfur substituents were synthesized and compared to oxygen analogues. Difunctional thiols, thioesters, thioethers, and disulfides, as well as hexafunctional nonpolymeric model systems, were explored. Upon exposure to oxygen, the thiol derivative was readily oxidized. These studies guided Ru(bpy)3 PEG coupling reactions with disulfide and thioether linkages, which proceeded to approximately 80% and approximately 60% yield, respectively. The luminescence properties of the Ru PEG derivatives and model systems were investigated. The emission spectra and lifetimes for all complexes in CH3CN under an inert atmosphere are comparable to [Ru(bpy)3]Cl2. Lifetime data for nonpolymeric analogues fit to a single exponential decay indicating heterogeneity, suggesting sample homogeneity, whereas data for polymers fit to a multiexponential decay. In contrast to certain [Ru(bpy)3](2+)/thiol mixtures, no intramolecular quenching by the sulfide is observed for [Ru(bpy)2{bpy(CH2SH)2}](PF6)2. Emission spectra red shift and multiexponential decay are noted for the oxidized Ru thiol product. The rates of oxygen quenching are slower for Ru PEG derivatives than those for nonpolymeric analogues, which may be attributed to shielding effects of the polymer chain.  相似文献   

14.
Two (ONO pincer)ruthenium‐complex‐bound norvalines, Boc?[Ru(pydc)(terpy)]Nva?OMe ( 1 ; Boc=tert‐butyloxycarbonyl, terpy=terpyridyl, Nva=norvaline) and Boc?[Ru(pydc)(tBu‐terpy)]Nva?OMe ( 5 ), were successfully synthesized and their molecular structures and absolute configurations were unequivocally determined by single‐crystal X‐ray diffraction. The robustness of the pincer Ru complexes and norvaline scaffolds against acidic/basic, oxidizing, and high‐temperature conditions enabled us to perform selective transformations of the N‐Boc and C?OMe termini into various functional groups, such as alkyl amide, alkyl urea, and polyether groups, without the loss of the Ru center or enantiomeric purity. The resulting dialkylated Ru‐bound norvaline, n‐C11H23CO?l ‐[Ru(pydc)(terpy)]Nva?NH‐n‐C11H23 (l ‐ 4 ) was found to have excellent self‐assembly properties in organic solvents, thereby affording the corresponding supramolecular gels. Ru‐bound norvaline l ‐ 1 exhibited a higher catalytic activity for the oxidation of alcohols by H2O2 than parent complex [Ru(pydc)(terpy)] ( 11 a ).  相似文献   

15.
Co-crystallization of K2[Ru(bipy)(CN)4] with lanthanide(III) salts (Ln = Pr, Nd, Gd, Er, Yb) from aqueous solution affords coordination oligomers and networks in which the [Ru(bipy)(CN)4]2- unit is connected to the lanthanide cation via Ru-CN-Ln bridges. The complexes fall into two structural types: [{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}] x xH2O (Ln = Pr, Er, Yb; m = 7, 6, 6, respectively), in which two [Ru(bipy)(CN)4]2- units are connected to a single lanthanide ion by single cyanide bridges to give discrete trinuclear fragments, and [{Ru(bipy)(CN)4}3{Ln(H2O)4}2] x xH2O (Ln = Nd, Gd), which contain two-dimensional sheets of interconnected, cyanide-bridged Ru2Ln2 squares. In the Ru-Gd system, the [Ru(bipy)(CN)4]2- unit shows the characteristic intense (3)metal-to-ligand charge transfer luminescence at 580 nm with tau = 550 ns; with the other lanthanides, the intensity and lifetime of this luminescence are diminished because of a Ru --> Ln photoinduced energy transfer to low-lying emissive states of the lanthanide ions, resulting in sensitized near-infrared luminescence in every case. From the degree of quenching of the Ru-based emission, Ru --> Ln energy-transfer rates can be estimated, which are in the order Yb (k(EnT) approximately 3 x 10(6) sec(-1), the slowest energy transfer) < Er < Pr < Nd (k(EnT) approximately 2 x 10(8) sec(-1), the fastest energy transfer). This order may be rationalized on the basis of the availability of excited f-f levels on the lanthanide ions at energies that overlap with the Ru-based emission spectrum. In every case, the lifetime of the lanthanide-based luminescence is short (tens/hundreds of nanoseconds, instead of the more usual microseconds), even when the water ligands on the lanthanide ions are replaced by D2O to eliminate the quenching effects of OH oscillators; we tentatively ascribe this quenching effect to the cyanide ligands.  相似文献   

16.
A series of heptametallic cyanide cages are described; they represent soluble analogues of defect-containing cyanometalate solid-state polymers. Reaction of 0.75 equiv of [Cp*Ru(NCMe)3]PF6, Et(4)N[Cp*Rh(CN)3], and 0.25 equiv of CsOTf in MeCN solution produced (Cs subset [CpCo(CN)3]4[Cp*Ru]3)(Cs subset Rh4Ru3). 1H and 133Cs NMR measurements show that Cs subset Rh4Ru3 exists as a single Cs isomer. In contrast, (Cs subset [CpCo(CN)3]4[Cp*Ru]3) (Cs subset Co4Ru3), previously lacking crystallographic characterization, adopts both Cs isomers in solution. In situ ESI-MS studies on the synthesis of Cs subset Rh4Ru3 revealed two Cs-containing intermediates, Cs subset Rh2Ru2+ (1239 m/z) and Cs subset Rh3Ru3+ (1791 m/z), which underscore the participation of Cs+ in the mechanism of cage formation. 133Cs NMR shifts for the cages correlated with the number of CN groups bound to Cs+: Cs subset Co4Ru4+ (delta 1 vs delta 34 for CsOTf), Cs subset Rh4Ru3 where Cs+ is surrounded by ten CN ligands (delta 91), Cs subset Co4Ru3, which consists of isomers with 11 and 10 pi-bonded CNs (delta 42 and delta 89, respectively). Although (K subset [Cp*Rh(CN)3]4[Cp*Ru]3) could not be prepared, (NH4 subset [Cp*Rh(CN)3]4[Cp*Ru]3) (NH4 subset Rh4Ru3) forms readily by NH4+-template cage assembly. IR and NMR measurements indicate that NH4+ binding is weak and that the site symmetry is low. CsOTf quantitatively and rapidly converts NH4 subset Rh4Ru3 into Cs subset Rh4Ru3, demonstrating the kinetic advantages of the M7 cages as ion receptors. Crystallographic characterization of CsCo4Ru3 revealed that it crystallizes in the Cs-(exo)1(endo)2 isomer. In addition to the nine mu-CN ligands, two CN(t) ligands are pi-bonded to Cs+. M subset Rh4Ru3 (M = NH4, Cs) crystallizes as the second Cs isomer, that is, (exo)2(endo)1, wherein only one CN(t) ligand interacts with the included cation. The distorted framework of NH4 subset Rh4Ru3 reflects the smaller ionic radius of NH4+. The protons of NH4+ were located crystallographically, allowing precise determination of the novel NH4...CN interaction. A competition experiment between calix[4]arene-bis(benzocrown-6) and NH4 subset Rh4Ru3 reveals NH4 subset Rh4Ru3 has a higher affinity for cesium.  相似文献   

17.
This paper presents a density functional theory study of the ruthenium-catalyzed olefin metathesis reactions. The ligand binding energy has been calculated in the first generation of Grubbs-type (PCy3)2Cl2Ru=CHPh (pre)catalyst, as well as in the heteroleptic (pre)catalytic systems in which a N-heterocyclic carbene, NHC, ligand substitutes a single phosphine. In agreement with experiments PCy3 coordinates more strongly to Ru in the heteroleptic (pre)catalysts than in the Grubbs-type (pre)catalyst. Moreover, ethene coordination and insertion into the Ru-alkylidene bond in the above-mentioned systems, as well as in the Hofmann type catalytic system with a cis-coordinated phosphane ligand, has been studied. The calculated insertion barrier for the NHC systems are lower than that of the (PCy3)2Cl2Ru=CHPh system. This is consistent with the higher activity experimentally observed for the NHC-based system.  相似文献   

18.
By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO2(111), TiO2(110) and Al2O3(001) surfaces. The heterogeneous system Ru1/CeO2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO2(110) and Al2O3(001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru1/CeO2 exhibits good catalytic activity for CO oxidation via the Langmuir–Hinshelwood mechanism, thus is a promising single‐atom catalyst.  相似文献   

19.
双核钌配合物中金属间相互作用的电化学研究   总被引:1,自引:0,他引:1  
李红  巢晖  计亮年  蒋雄 《电化学》2001,7(2):167-172
应用循环伏安、循环交流伏安和微分电容测定等电化学方法研究了由 2 ,2一联吡啶(bpy)和桥联配体 1,4_二 [2_咪唑并 [4 ,5_f]邻菲咯啉 ]苯 (DIPB)或 1,4_二 [2_脱氢咪唑并 [4,5_f]邻菲咯啉 ]苯 (DIPB_2H)所形成的对称双核钌配合物 (Ru2 :(bpy) 2 Ru(DIPB)Ru(bpy) 2 (ClO4 ) 4 和Ru2_2H :(bpy) 2 Ru(DIPB_2H)Ru(bpy) 2 (ClO4 ) 2 )在铂电极上的电化学性质以及金属间的相互作用 .研究结果表明 ,在 0 .1mol/L高氯酸四丁基铵 (TBAP)的乙腈溶液中 ,中心离子在循环伏安图上均呈现 1对可逆的 2电子氧化还原波 ,电位也几乎不变 ,其所对应的配位阳离子的扩散系数分别为 3.50×10 - 6 cm2 /s和 3.94× 10 - 6 cm2 /s.循环交流伏安和微分电容测定研究发现 ,桥联配体去质子化后 ,中心离子间的电子相互作用增强  相似文献   

20.
Thiol-tethered Ru(II) terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Molecularly resolved scanning tunneling microscopy (STM) images revealed well-defined single Ru(II) complexes isolated in the highly ordered dielectric monolayer. When a negative sample-bias was applied, the threshold voltage to the high conductance state in the molecular junctions of the Ru(II) complex was consistent with the electronic energy gap between the Fermi level of the gold substrate and the lowest ligand-centered redox state of the metal complex molecule. As an active redox center leading to conductance switching in the molecule, the lowest ligand-centered redox state of Ru(II) complexes was suggested to trap an electron injected from the gold substrate. Our suggestions for a single-molecule switch-on mechanism in the solid state can provide guidance in a design that improves the charge-trapping efficiency of the ligands with different metal substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号