首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of citric acid as a chelating agent and fuel, ammonium nitrate as fuel, boric acid as flux material and silica as supports, CaWO4:Ln3+@SiO2 (Ln = Er and Tm) nanoparticles were synthesized via a combustion reaction at 800 °C. Characterization of the samples was performed by X-ray diffractometer (XRD), reflectance UV–Vis spectrophotometer, fluorescence spectrophotometer (PL) and transmission electron microscope (TEM). XRD patterns showed that tetragonal crystalline structure of scheelite and silica supports were formed, and that the formation of a silica support could enhance the luminescence intensity of CaWO4:Ln3+. The reflectance UV–Vis and PL spectra indicated the broad absorption band of WO4 2? groups about 240 nm, the WO4 2? wide excitation band with maximum at 240 nm, a broad emission band of WO4 2? with maximum about 420 nm, and characteristic emissions of Ln3+ ions. According to the TEM analysis, CaWO4:Er3+@SiO2 and CaWO4:Tm3+@SiO2 nanoparticles have almost the same morphology with average particle sizes about 50 nm.  相似文献   

2.
Highly biocompatible coordination polymer (Prussian Blue) nanoparticles (LC(50) > 1000 μg mL(-1)) with a hollow interior and a microporous framework (denoted as HPB) are utilized as an anticancer drug (i.e. cisplatin) capsule for chemotherapy of bladder cancer T24 cells.  相似文献   

3.
Yang P  Gai S  Liu Y  Wang W  Li C  Lin J 《Inorganic chemistry》2011,50(6):2182-2190
Uniform hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) phosphors have been successfully prepared via a urea-assisted homogeneous precipitation method using carbon spheres as templates, followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, kinetic decays, quantum yields (QY), and UV-visible diffuse reflectance spectra were employed to characterize the samples. The results show that hollow Lu(2)O(3):Ln spheres can be indexed to cubic Gd(2)O(3) phase with high purity. The as-prepared hollow Lu(2)O(3):Ln phosphors are confirmed to be uniform in shape and size with diameter of about 300 nm and shell thickness of approximate 20 nm. The possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow Lu(2)O(3):Ln microspheres has been proposed. Upon ultraviolet (UV) and low-voltage electron beams excitation, the hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) spheres exhibit bright red (Eu(3+), (5)D(0)-(7)F(2)) and green (Tb(3+), (5)D(4)-(7)F(5)) luminescence, which may find potential applications in the fields of color display and biomedicine.  相似文献   

4.
Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated.  相似文献   

5.
Novel multifunctional nanoparticles containing a magnetic Fe3O4@SiO2 sphere and a biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate) (PEG-b-PAsp) were prepared. The silica coated on the superparamagnetic core was able to achieve a magnetic dispersivity, as well as to protect Fe3O4 against oxidation and acid corrosion. The PAsp block was grafted to the surface of Fe3O4@SiO2 nanoparticles by amido bonds, and the PEG block formed the outermost shell. The anticancer agent doxorubicin (DOX) was loaded into the hybrid nanoparticles via an electrostatic interaction between DOX and PAsp. The release rate of DOX could be adjusted by the pH value.  相似文献   

6.
Quaternary ammonium functionalized polyhedral oligomeric silsesquioxane (OctaAmmonium-POSS) units, widely employed as additives in ceramic and polymeric systems, possess many attributes which make them attractive as biocompatible drug carriers: nanoscale size, three-dimensional functionality, efficient cellular uptake, low toxicity, and high solubility.  相似文献   

7.
Core-shell nanoparticles of Au@silica with a diameter of approximate 45–60 nm and wall thickness in range of 3–10 nm were synthesized by using 40 and 50 nm gold nanoparticles as the templates. The mesoporous particles are regulated by 3-aminopropyltrimethoxysilane addition. Hollow mesoporous silica nanocapsules (HMSNs) were prepared by using sodium cyanide to dissolve the gold cores. The characterization of Au@silica and HMSNs by transmission electronic microscope indicated that the silica shells were uniform and smooth, and also the porosity was proved by fluorescein isothiocyanate (FITC) release experiments. The ratio of hollow core to HMSNs is more than 70%. HMSNs were subsequently used as drug carrier to investigate FITC (as a model drug) release behaviors in vitro. Fluorescent spectrometry was performed to determine the release kinetics from the HMSNs. The release profiles are significantly different as compared with the control (free FITC), which show that HMSNs are good drug carriers to control drug release, and have high potential in therapeutic drugs delivery in future applications.  相似文献   

8.
Porous silica microspheres were fabricated by a facile surface-protected etching strategy. Polyvinylpyrrolidone (PVP) was used as a protecting polymer absorbed on the surface of silica microspheres and NaOH was employed as an etching agent. Owing to the protective action of PVP and inhomogeneous etching, mesopores were created in the silica microspheres. Then, based on the Pechini-type sol-gel and impregnating process, YVO(4):Eu(3+) nanocrystals were integrated into the channels to form highly luminescent YVO(4):Eu(3+)@SiO(2) composite microspheres. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of the system. Owing to the large interior space and electrostatic interaction, the porous microspheres show a relatively high loading capacity (438 mg DOX/YVO(4):Eu(3+)@SiO(2) g) and encapsulation efficiency (87.6%) for the anti-cancer drug doxorubicin hydrochloride (DOX). The drug release behavior and cytotoxic effect against human cervical carcinoma cells (HeLa cells) of the DOX-loaded YVO(4):Eu(3+)@SiO(2) carriers were investigated in vitro. It was found that the carriers present a highly pH-dependent drug release behavior due to electrostatic interaction between the silica surface and DOX molecules. The drug release rate became greater at low pH owing to the increased electrostatic repulsion. The DOX-loaded carriers demonstrate a similar or even greater anti-cancer activity with respect to the free DOX against HeLa cells. Furthermore, the PL intensity of the microspheres shows correlation with the cumulative release of DOX. These results suggest that the composite can potentially act as a multifunctional drug carrier system with luminescent tagging and pH-controlled release properties.  相似文献   

9.
10.
A facile, mild, environmentally friendly and reproducible strategy was used to fabricate the multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe(3)O(4)-mesoporous silica yolk-shell nanocapsules for simultaneous fluorescent tracking and magnetically guided small interfering RNA delivery.  相似文献   

11.
Fluorescent and luminescent reporters that signal molecular events of interest by modulating the ratio of peaks in their emission profile have advantages over reporters that simply modulate their emission intensity, since ratiometric measurement is concentration-independent and allows them to be effective in complex contexts, such as living cells or sensor microarrays. We herein describe a general platform for the design of ratiometric probes based on a heterometallic Tb(3+)/Eu(3+) bis-lanthanide ensemble, consisting of a mixture, or "cocktail", of otherwise identical heterometalated chelates. The chelate contains an organic photon antenna that sensitizes the Tb(3+)/Eu(3+) luminescence. The contributions of the two metals to the composite luminescence spectrum can be tuned to the same relative scale by adjusting the stoichiometry of the cocktail, allowing subtle changes in their ratio to be accurately measured. Importantly, the ratio responds to chemical and environmental changes experienced by the photon antenna, making the system an ideal platform for the design of chemical and enzymatic probes. As proofs of concept, we describe a ratiometric probe for esterase activity and a polarity-responsive ratiometric sensor.  相似文献   

12.
Biomimetic acryloyloxyethyl phosphorylcholine (APC) was used to react with generation 5 poly(amido amine) (PAMAM) dendrimers (G5) via the Michael addition reaction between primary amino group of PAMAM dendrimers and acrylic functional group of APC. FTIR and (1)H NMR confirmed the success of surface modification of G5. The primary amino and phosphorylcholine (PC) group numbers of the surface engineered PAMAM dendrimers (G5-PC) were calculated to be 56 and 50 via (1)H NMR and potentiometric titration. Cell viability and cell morphology studies indicated that biomimetic phosphorylcholine surface engineering successfully lowered the cytotoxicity of G5 PAMAM dendrimers. The hydrophobic interior of G5-PC was used to incorporate anti-cancer drug Adriamycin (ADR) and the G5-PC showed sustained releasing behavior for ADR. Cell morphology and viability tests indicated that the drug-loaded G5-PC conjugate could effectively enter the cancer cells and inhibit the growth of cancer cells. Biomimetic phosphorylcholine surface engineered PAMAM dendrimers with lowered cytotoxicity and high cellular penetrating ability showed great potential for the biomedical applications as nanocarrier system.  相似文献   

13.
Shi M  Liu Y  Xu M  Yang H  Wu C  Miyoshi H 《Macromolecular bioscience》2011,11(11):1563-1569
Novel stable core/shell Fe(3)O(4)@SiO(2)/PAH nanoparticles are synthesized using 15 nm Fe(3)O(4) as the template that is modified with PAH. The resulting nanoparticles can absorb plasmid DNA to mediate gene transfer in cultured HeLa cells. An electrophoretic assay suggests that the Fe(3)O(4)@SiO(2)/PAH nanoparticles protect the plasmid DNA from serum and DNase I degradation. A cell viability assay shows that the Fe(3)O(4)@SiO(2)/PAH nanoparticles exhibit a low cytotoxicity toward endothelial cells. Qualitative analysis of transfection in HeLa cells by nanoparticles carrying a plasmid DNA encoding EGFP demonstrates a fairly high expression level, even in the presence of serum. Thus, Fe(3)O(4)@SiO(2)/PAH nanoparticles are biocompatible and suitable for nonviral delivery, and may find applications in cancer therapy.  相似文献   

14.
A two-component ligand system (1) containing 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) as the hosting unit for the lanthanide cations and an appended asymmetrically functionalized 1,10-phenanthroline (phen) as the chromophore was synthesized. The 1:1 complexes with Eu(3+), Gd(3+), Tb(3+), and Yb(3+) have been prepared and studied in aqueous solution. For Gd.1, a relaxivity value of 2.4 mM(-1) s(-1) has been measured at 20 MHz and 25 degrees C, which indicates that there are no water molecules in the first coordination sphere of the metal ion. The analysis of high resolution (1)H NMR spectra of Yb.1 supports this view and suggests the direct involvement of the phen moiety in the coordination of the metal ion. For Eu.1 and Tb.1, the absorption and luminescence spectra, the overall luminescence efficiencies, and the metal-centered (MC) lifetimes were obtained; coordination features were also determined by comparing luminescence properties in water and deuterated water. For Eu.1 and Tb.1, the overall emission sensitization (se) process in air-equilibrated water was found to be notably effective with phi(se) = 0.21 and 0.11, respectively. A detailed study of the steps originating from light absorption at the phen unit and leading to MC sensitized emission was performed.  相似文献   

15.
Solvothermally synthesized CePO(4):Tb,Gd hollow nanospheres were fabricated as a peroxidase mimic and bimodal magnetic-fluorescent imaging agent, which show potential applications in biocatalysis and bioimaging.  相似文献   

16.
Submicron particles with modified surface were synthesized by a simple one-pot synthesis approach and used as drug carrier for controlled release. Due to the alkalinity of MgO species on the surface, the amount of a model drug, ibuprofen, adsorbed on the modified surface was increased as compared to pure silica SBA-15 although the surface area was decreased by the surface modification. FTIR investigation indicated that the adsorption state of ibuprofen on MgO modified SBA-15 was different from that on pure silica SBA-15 and pure crystal ibuprofen. The result obtained from in vitro release test exhibited that the surface modification greatly decreased the ibuprofen release rate. In first 6 h in vitro release test, only 63% of the adsorbed ibuprofen was released from the MgO/SBA-15 (Si/Mg=20). In contrast, the release of ibuprofen was complete in 1 h from the pure silica SBA-15 under the same release conditions. The surface modified with MgO created affinity with acidic ibuprofen molecules and retarded the release rate from the mesoporous matrix. In addition, the release rate of ibuprofen could be modulated by varying the content of MgO, and was found to decrease with increasing amount of MgO on surface of SBA-15 submicron particles.  相似文献   

17.
因为环糊精的生物相容性和多功能性,通过改性以及各种剂型的设计,能够扩展其在医药领域的应用。本文介绍了环糊精及其衍生物在药物控制释放体系中的作用机理及特点,并结合本课题组的研究工作,综述了近年来环糊精在该领域中的应用研究进展。  相似文献   

18.
Poly(ethylene glycol) (PEG) is widely used as a water soluble carrier for polymer-drug conjugates. Herein, we report degradable linear PEG analogs (DPEGs) carrying multifunctional groups. The DPEGs were synthesized by a Michael addition based condensation polymerization of dithiols and PEG diacrylates (PEGDA) or dimethacrylates (PEGDMA). They were stable at pH 7.4 but quickly degraded at pH 6.0 and 5.0. Thus, DPEGs could be used as drug carriers without concern for their retention in the body. DPEGs could be made to carry such functional groups as terminal thiol or (meth)acrylate and pendant hydroxyl groups. The functional groups were used for conjugation of drugs and targeting groups. This new type of PEG analog will be useful for drug delivery and the PEGylation of biomolecules and colloidal particles.  相似文献   

19.
A novel Fe3O4@SiO2@poly-l-alanine peptide brush–magnetic microsphere (PBMMs) was synthesized from amine-functionalized Fe3O4 through the surface-initiated polymerization of N-carboxyanhydrides. Two materials with different peptide lengths were obtained from different amounts of N-carboxyanhydrides. These materials were characterized by Fourier transform infrared, transmission electron microscopy, large-angle powder X-ray diffraction, vibrating sample magnetometer and elemental analysis. Furthermore, the loading and release behavior of ibuprofen and the enrichment of bovine serum albumin on the two materials were investigated and it was shown that the PBMMs have a maximum uptake amount of ibuprofen of 40.3 mg g−1, and an enrichment of bovine serum albumin of 20.9 mg g−1. These materials are promising candidates for targeted drug delivery and protein enrichment.  相似文献   

20.
A new inorganic/organic hybrid material containing silsesquioxane was prepared by the reaction of caged octa (aminopropyl silsesquioxane) (POSS-NH(2)) with n-butyl glycidyl ether (nBGE) and 1,4-butanediol diglycidyl ether (BDGE). The copolymers of POSS, nBGE, and BDGE could be obtained with varied feed ratio of POSS-NH(2), nBGE, and BDGE in the preparation. The hybrid material was added into an epoxy resin (E51) for enhancing the toughening and thermal properties of the epoxy resin. The results showed that the toughening and the thermal properties of the cured epoxy resin were greatly improved by the addition of the hybrid. The enhancement was ascribed to nano-scale effect of the POSS structure and the formation of anchor structure in the cured network. The investigation of kinetics for the curing process of the hybrid-modified epoxy resin revealed that two kinds of curing reactions occurred in different temperature ranges. They were attributed to the reactions between amino groups of the curing agent with epoxy groups of E51 and with residue epoxy groups in the hybrid. The reacting activation energies were calculated based on Kissinger's and Flynn-Wall-Ozawa's methods, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号